

Marimba: A Tool for Verifying Properties of Hidden Markov Models

Rong Li 1,2, a, Lei Quan 3,b
1 East China Institute of Technology,Jiangxi NanChang in China

2Guangxi Key Laboratory of Spatial Information and Geomatics,Guilin in China
3 East China Institute of Technology,Jiangxi FuZhou in China

arli@ecit.cn, blquan@ecit.cn

Keywords:. Automated Technology, Robotics, Human-robot interaction ,Hidden Markov Models.
Abstract. The formal verification of properties of Hidden Markov Models (HMMs) is highly desirable
for gaining confidence in the correctness of the model and the corresponding system. A significant step
towards HMM verification was the development by Zhang et al. of a family of logics for verifying
HMMs, called POCTL*, and its model checking algorithm. As far as we know, the verification tool we
present here is the first one based on Zhang et al.'s approach. As an example of its e effective
application, we verify properties of a handover task in the context of human-robot interaction. Our tool
was implemented in Haskell, and the experimental evaluation was performed using the humanoid robot
Bert2.

Introduction
A Hidden Markov Model (HMM) is an extension of a Discrete Time Markov Chain (DTMC) where
the states of the model are hidden but the observations are visible. Typically, an HMM is studied with
respect to the three basic problems examined by Rabiner in [9]. However, to the best of our knowledge,
no practical model checker exists for HMMs despite their broad range of applications, e.g., speech
recognition, DNA sequence analysis, text recognition and robot control. We describe in this paper a
tool for verifying HMM properties written in the Probabilistic Observation Computational Tree Logic*
(POCTL* [11]), and use this tool for verifying properties of a robot-to-human handover interaction.

POCTL* is a specification language for HMM properties. It is a probabilistic version of CTL*
where a set of observations is attached to the next operator. Zhang et al. [11] sketched two model
checking algorithms for POCTL*, an "automaton based" approach, and a "direct" approach. We opted
for the direct approach for its lower time complexity. Noticeably, this approach produces a DTMC D
and a Linear Temporal Logic (LTL) formulaφ , so the PRISM [6] model checker could be used to
verify this property. Such a model checker follows the automata based approach whose complexity is
doubly exponential in |D| and polynomial in |D|, whereas we implemented the direct method by
Courcoubetis et al. [1] whose complexity is singly exponential in j j and polynomial in |D|, which is also
the final complexity of our tool. This direct method repeatedly constructs a DTMC and rewrites an
LTL formula, such that one temporal operator is removed each time while preserving the probability of
satisfaction.

We have named our model checker Marimba. A marimba is a xylophone-like musical instrument
that is popular in south-east Mexico and Central America. Marimba [5] was implemented in Haskell
and compiled with GHCi. Our tool is available for download from https://github.com/nobernan/Mar-
imba.

Tool architecture and implementation
Haskell was chosen to code this first version of Marimba since it allows us to work in a high-level
abstract layer, by providing useful mechanisms like lazy evaluation and a pure functional paradigm.
Furthermore, Haskell manages recursion efficiently; this is a valuable aspect because recursive calls are
made continuously throughout the execution. As a future work, we consider coding Marimba in a
language like Java and make it a symbolic model checker.

5th International Conference on Advanced Engineering Materials and Technology (AEMT 2015)

© 2015. The authors - Published by Atlantis Press 587

Marimba features a command-line interface. Furthermore, instead of working with a command
window, a more user friendly and preferable execution is accomplished through the Emacs text editor
extended with the Haskell-mode.

Marimba's input and modules
The first input is a .poctl file with the six elements of an HMM H, namely a finite set of states S, a state
transition probability matrix A, a finite set of observations , an observation probability matrix B, a
function L that maps states to sets of atomic propositions from a set APH, and an initial probability
distribution π over S. The second input is a POCTL* state formula Φtyped in the command window
according to the syntactic rules:
Φ ::=true｜false｜a｜(-Φ) ｜(Φ∨Φ) ｜(Φ∧Φ) ｜(P p(Φ))，
Φ ::= Φ｜(-Φ) ｜(Φ∨Φ) ｜(Φ∧Φ) ｜(XoΦ) ｜(Φu≤nΦ) ｜(ΦuΦ),
Where a∈ APH,o∈θ,n∈ N,p∈ [0,1],and ∈{≤,＜,≥,＞}. In addition, we define XΩφ as a shorthand
for ∨ O∈Ω Xoφ provided Ω⊆ θ . We examine below the six Haskell modules that constitute
Marimba.

ModelChecker.h s performs the initial computations of the model checker for POCTL*. It
recursively finds a most nested state subformula of Φ , not being a propositional variable, and the states
of H that satisfy it. On the one hand, finding the states satisfying a propositional subformula is
straightforward. On the other hand, we invoke the module DirectApproach.hs to obtain the states
satisfying a probabilistic state subformula. Next, this module extends the labels of such states with a
new atomic proposition a. In Φ, the state subformula being addressed is replaced by a. The base case
occurs when we reach a propositional variable, so we return the states that have it in their label.

DirectApproach.hs transforms the HMM H into a DTMC D, and removes from the specification the
observation set attached to the next operator X by generating a conjunction of the observation-free X
with a new propositional variable. Thus, we obtain an LTL formula that is passed, together with D, to
the module Courcoubetis.hs. The new propositional variables are drawn from the power set of
observations. Remarkably, it is not necessary to compute such a power set since the label of a state in
D is easily calculated.

Courcoubetis.hs implements a modified version of the method by Courcoubetis et al. to find the
probability that an LTL formula is satisfied in a DTMC. In this module, when dealing with the U and U≤

n operators, we apply ideas from [10] for computing a partition of states of D. Moreover, to handle the
U operator we have to solve a linear equation system. To that end, we use the linearEqSolver library
[3], which in turn executes the Z3 theorem prover [2].

Lexer.hs and Parser.hs are in charge of the syntactic analysis of the input. Finally, Main.hs is loaded
to start Marimba. This module manages the interaction with the user, and starts the computation by
passing control to ModelChecker.hs.

In a typical execution, Marimba prompts the user to enter a .poctl le path. Next, our tool asks
whether or not the user wants to take into account the initial distribution in the computation of the
probability of satisfaction. This choice corresponds to opposite ideas presented in [1] and [11], i.e.,
the method by Courcoubetis et al. uses the initial distribution to de ne their probability measure,
contrary to that de ned by Zhang et al. Afterwards, a POCTL* formula has to be entered. Marimba
returns the list of states satisfying this formula, and asks the user whether there are more formulas to be
verified on the same model.

The .poctl le is simply a text le where the elements of an HMM are defined, e.g., the set of states is
defined by the reserved word States, and if the model consists of five states, we write States=5.

Likewise, POCTL* formulas have a natural writing, for example, P<0.1(X{o1}a) is typed as
P[<0.1](X_{1}a).

588

Verification of a human-robot interaction
We applied Marimba to a real-world example, namely the verification of the robot-to-human handover
task [4] using the robot Bert2 [7] at the Bristol Robotics Laboratory (BRL). The robot's decision to
release the object during the handover task is determined by an HMM [4]. Figure 1 presents the state
diagram of the HMM corresponding to the basic handover interaction, where the label L(s) is defined
for each state.

Next, we initialise A, B and π of the HMM as follows. The process starts at state Robot not hold, so
its initial distribution value π1 is almost one, while the other states have initial distribution values close
to zero. The initial matrix A must encourage the transitions shown in Figure 1. To initialise B, we
consider as observations the ordered pairs whose first and second components are the index and middle
finger metacarpophalangeal joint motor current values, respectively. By the Cartesian product of these
values, we obtain 56,404 observations. Since these observations are merged with the states to
generate the DTMC passed to Courcoubetis.hs, and the size of a formula could grow considerably by
associating the next operator with up to 56,404 observations, Marimba's execution is not practical
under these circumstances. Vector quantisation 8 was used to reduce the number of observations to
just 13, which were taken to initialise matrix B. Thus, the initial ordered pairs are grouped into 13
regions of the plane representing the observations.
To make reliable estimates, we collected observations from 50 handover ex-periments on Bert2. These
observations were used to train the initial HMM with the reestimation method found in the solution of
Rabiner's Problem 3 9.

Liveness properties. A liveness property requires that a good thing happens during the execution of a
system. For example, we would like to know whether the model generates the sequence of
observations O = o1, o2, o3, o4 where o1, o2 ∈ {3, 4,6} and o3, o4 ∈ {3, 4, 11}, with probability
greater than 0.88, that is,P>0.88(X{3, 4,6 }(X{3, 4,6 } (X{3, 4, 11} (X{3, 4, 11}true)))). Interestingly, this
property is a generalisation of Rabiner's Problem 1 9. Marimba's execution for this property is found in
Figure 2. The inputs are the trained HMM, de ned in ModelBert2.poctl, and the previous formula. The
output returned by Marimba is State 4. Hence, the model starting at state User grab is likely to generate
O.

A second liveness property states that with probability at least 0.9, Bert2 releases the object when
the user grabs it. The POCTL* formula for this property is P≥ 0.9(rh ^ (rh u (ug ^ ug u rnh))). Marimba

Fig. 1 The labelled states involved
in the basic handover process.

Fig. 2 Verifying a property with Marimba.

589

outputs State 3, i.e., the specication is satis ed when the starting state is Robot hold. So, we expect
Bert2 to hold the object, and let it go when the user grabs it.

Conclusions
Since the automatic veri cation of properties of HMMs seems to be an unat-tended problem, we
present here Marimba, a Haskell implementation of the model checking algorithm for POCTL* [11].
This model checking algorithm was slightly modi ed to carry out its computations in a real program.
Marimba's calculation is basically broken out in three stages that are coded in the modules

ModelChecker.hs, DirectApproach.hs and Courcoubetis.hs, such that the involved components,
steps and transformations are well arranged throughout the im-plementation. Finally, we have
successfully applied Marimba to verify relevant properties of a handover interaction from the robot
Bert2 to a human.

References

[1] C. Courcoubetis and M. Yannakakis, The complexity of probabilistic veri cation, J. ACM 42 (1995),
no. 4, 857-907.

[2] L. De Moura and N. Bj rner, Z3: An e cient SMT solver, Proceedings of the Theory and Practice of
Software (TACAS '08), LNCS, Springer, 2008, pp. 337-340.

[3] L. Erkok, linearEqSolver: a library to solve systems of linear equations, using SMT solvers.,
https://github.com/LeventErkok/linearEqSolver.

[4] E. C. Grigore, K. Eder, A. G. Pipe, C. Melhuish, and U. Leonards, Joint action understanding
improves robot-to-human object handover, IEEE/RSJ International Conference on Intelligent Robots
and Systems, IEEE, 2013, pp. 4622-4629.

[5] N. Hernandez, Model checking based on the hidden Markov model and its application to
human-robot interaction, Master's thesis, Universidad Nacional Autonoma de Mexico, Mexico, 2014,
Available from http://132.248.9.195/ ptd2014/noviembre/303087692/Index.html.

[6] M. Kwiatkowska, G. Norman, and D. Parker, PRISM 4.0: Veri cation of proba-bilistic real-time
systems, Proc. 23rd International Conference on Computer Aided Veri cation (CAV '11), LNCS, vol.
6806, Springer, 2011, pp. 585-591.

[7] A. Lenz, S. Skachek, K. Hamann, J. Steinwender, A. G. Pipe, and C. Melhuish, The BERT2
infrastructure: An integrated system for the study of human-robot in-teraction, 10th IEEE-RAS
International Conference on Humanoid Robots, IEEE, 2010, pp. 346-351.

[8] Y. Linde, A. Buzo, and R. M. Gray, An algorithm for vector quantizer design, IEEE Transactions
on Communications 28 (1980), 84-95.

[9] L. R. Rabiner, A tutorial on hidden Markov models and selected applications in speech recognition,
Proceedings of the IEEE 77 (1989), 257-286.

[10] J. Rutten, M. Kwiatkowska, G. Norman, and D. Parker, Mathematical techniques for analyzing
concurrent and probabilistic systems, CRM Monograph Series, vol. 23, American Mathematical
Society, 2004.

Supported by Key Laboratory of Spatial Information and Geomatics(Guilin University of
Technology)(1103108-26)

590

