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Abstract. In this paper, a least squares support vector machine with mixture kernel (LS-SVM-MK) is 
proposed to solve the problem of the traditional LS-SVM model, such as the loss of sparseness and 
robustness. Thus that will result in slow testing speed and poor generalization performance. The 
revision model LS-SVM-MK is equivalent to solve a linear equation set with deficient rank just like the 
over complete problem in independent component analysis. A minimum of 1-penalty based object 
function is chosen to get the sparse and robust solution. Some UCI datasets are used to demonstrate 
the effectiveness of this model. The experimental results show that LS-SVM-MK can obtain a small 
number of features and improve the generalization ability of LS-SVM. 

Introduction 
Support vector machines (SVM) [1]-[2] is powerful new tools for data classification and function 
estimation. Recently SVM have received a lot of attention in the machine learning community because 
of their remarkable generalization performance. The SVM typically follows from the solution to a 
quadratic programming. Despite its many advantages, one problem is that the size of the matrix of the 
quadratic programming is directly proportional to the number of training points. Thus this greatly 
increases the computational complexity [3], especially for the problems which deal with mass data or 
need on-line computation. Least squares support vector machine just makes up for that shortcoming. 

Least squares support vector machine (LS-SVM) [4]-[5] is equivalent to solve a set of linear 
equations instead of a quadratic programming. Because theε –insensitive loss function used in SVM is 
replaced by a sum square error loss function, the inequality restriction is replaced by the equation 
restriction. Thus this makes the least squares support vector machine achieve lower computational 
complexity. But there are some potential drawbacks for LS-SVM [6]. The first drawback is that the 
usage of the sum square error may lead to less robust estimates. Reference [6] presents a weighted LS- 
SVM to solve this issue. This method needs an interactive procedure to get optimal cost function and 
robust estimation gradually. The second drawback is that the sparseness of the data points is lost. The 
pruning method [7] is used to get the sparse solution by omitting a relative small amount of the least 
meaningful data points. It also needs a series of steps for LS-SVM to retrain. A more sophisticated 
pruning method [8] introduces a procedure that the training samples be selected from a data set, and 
these training samples will introduce the smallest approximation error that can be omitted. Another 
method [9] deletes some columns of the coefficient matrix through a certain measure. When the final 
model is used to represent the original system, the performance would be hurt. 

Recently, how to learn the kernel from data draws many researchers’ attention. The reference [10] 
draws the conclusion that the optimal kernel can always be obtained as a convex combinations of many 
finitely basic kernels. And some formulations [11] [12] have been proposed to perform the 
optimization in manner of convex combinations of basic kernels. 

Motivated by above questions and ideas, we propose a new method named least squares support 
vector machines with mixture of kernel (LS-SVM-MK) to classify the data. In this method the kernel is 
a convex combination of many finitely basic kernels. Each basic kernel has a kernel coefficient and is 
provided with a single feature. The 1-norm is utilized in LS-SVM-MK. As a result, its objective 
function turns into a linear programming parameter iterative learning procedure and greatly reduces the 
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computational complexity. Furthermore, we can select the optimal feature subset automatically and get 
an interpretable model. 

This paper is organized as follows.  In section 2, we give the LS-SVM-MK formulations and then 
set up the corresponding solutions. Numerical test results represent in Section 3 shows that our 
LS-SVM-MK is of good sparse and robustness performance. Section 4 concludes the paper and 
introduces some future research directions. 

LS-SVM with mixture of kerneL 

A.LS-SVM-MK 
 Like least squares support vector machine, the object function for the LS-SVM-LP is defined as: 
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For classification problems, it subjects to: 
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where kix , denotes the thk component of the input vector ix . It can be overcomplete dictionaries 
such as wavelet. 

By introducing Lagrange multipliers ki,α , the corresponding Lagrangian is given by: 
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where ki,α is the Lagrange multiplier for the thk component of sample i . 
According to Kuhn-Tucker conditions, the following functions can be got: 
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Substitute equations (4) and (6) into equation (2), then equation (2) is transformed to the following 
form: 
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Equations (5) and (7) can be written as the following matrix form: 
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The following equation is the standard form of LS-SVM: 
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Compared equation (8) with the standard form of LS-SVM in equation (10), we can find that the 
kernel mapping is executed in each component and the Lagrange multiplier ki,α can be seen as the 
weight for each component and sample other than only for each sample in other methods. 

Then the output is obtained: 
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In practice, a simple and efficient method is that the kernel function being illustrated as the convex 
of combinations of the basic kernel: 
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where dix , denotes the thd component of the input vector ixv . 
Substituting Equation (12) into Equation (7), and multiplying Equation (7) and (8) by dβ , 

suppose didi βαη ⋅=, , then the Lagrange dual problem change into equation (13).  Function (11) is 

equivalent to the sum of the sub-function in different elements: 
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where )(xf k  represents the contribution for the output by each element. 

B.Finding Solutions 
From equations (8), we can find that the new LS-SVM is equivalent to solve a deficient rank linear 

equation set just like the overcomplete problem in ICA. Because the matrix A is nmn × , there are 
infinite solutions to equations (8). It brings us a chance and challenge to get sparse solutions. There are 
many approaches presented to resolve this problem, including the method of Frames (MOF) and basis 
pursuit (BP) [11]-[12]. 

Unlike MOF, BP replaces the 2l norm with the 1l norm: 
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final solution. Of course, we can use other optimization forms or algorithms according to the 
requirements of the problems. The flexibility is just the most advantages for this method. So the new 
LS-SVM method is called least squares support vector machine with linear programming formulation. 

C.Algorithm 
The procedures to implement the MK-LS-SVM can be summarized as the following steps: 
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1) Data Preprocess: firstly, the data is normalized for convenience. Then the input data is presented 
in the overcomplete forms. 

2) Initialization Parameters: according to some criteria or experience, the coefficient η must be 
given some initial value.  

3) Construct Formulation: the new model based on the LS-SVM is constructed according to the 
equation (8). 

4) Solving: a linear programming with equality constrains (10) is solved to get the Lagrange 
coefficients α andb . 

5) Output: then the output is got according to equation (13). 
6) Calculate Errors: some defined measures are calculated according to the 

coefficientsα andb solved by step 4. 
If we aren’t satisfied with the results, change the coefficients and go back to step 2. 

Experiments Analysis 
Before you begin to format your paper, first write and save the content as a separate text file. Keep 
your text and graphic files separate until after the text has been formatted and styled. Do not use hard 
tabs, and limit use of hard returns to only one return at the end of a paragraph. Do not add any kind of 
pagination anywhere in the paper. Do not number text heads-the template will do that for you. 

This section reports the results of our empirical analysis on the above presented MK-LS-SVM 
algorithm. And we discuss the comparisons between MK-LS-SVM and other popular models, such as 
LS-SFM, GA-based SVM, wavelet neural network, new class of wavelet neural network, LS-SVM 
and ridge regression. 

The classification performance is measured by its specificity accuracy, sensitivity accuracy and 
overall accuracy, which are the percent of correctly classified of healthy records, percent of correctly 
classified of patients and the percent of correctly classified in total, respectively. 
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Where TN is a sample which represents the number of samples for the sick sample itself is sick, it 
was also correctly classified as sick. FP represents the number of samples is the sample itself is sick, but 
it was mistakenly classified as healthy. Similarly, TP represents a sample of the sample itself is healthy, 
it is correctly classified as a healthy number of samples. FP is a healthy sample representative of the 
sample itself was classified as the number of sick samples. 

To decrease the bias arising from the choice of split between training sample and test sample, we 
randomly select the training samples from the dataset and make use of five-fold cross validation. 

Here we will test three UCI database to verify the validity of our proposed model. These databases 
are often used as a reference database to verify the validity of the classification model. These three 
databases[13] are Wisconsin breast cancer dataset (WBCD), Heart disease dataset (HD) and PIMA 
database, their basic information shown in the chart I below. 

Table 1.       There UCI databases 
Database  Class number  Records number Feature number 

WBCD 2 699 9 
HD 2 270 13 
PIMA  2 768 8 

For the LS-SVM-MK classifier, the Gaussian kernel is used. So the kernel parameter and 
regularization parameter γ  need to be chosen. Table I shows test set correctness, using the 
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LS-SVM-MK with various parametersγ  when 2σ is equal to 1000, under five-fold cross validation 
for the above mentioned dataset. The column titled number of selected features (NSF) is the number of 
support vectors selected from the training samples. 

LS-SVM-MK average test results on three databases are shown in Table II. The kernel parameter 
and regularization parameters are based on the results of cross-validation selection. According to 
experience, our proposed classification accuracy of the model is good, but also in ensuring good 
sensitivity and specificity in the lower level, the more difficult points PIMA database we used only 
two-dimensional features, while the total classification accuracy was 77.92%. For the other two 
databases, the selected feature numbers were 2 and 5, the classification results using these features to 
train the classifier was also very good. As can be seen, least squares support vector machines with 
mixture of kernels to get the final result only a few iterative steps, the algorithm speed is very fast. 

Table 2. Experimental results of MK-LS-SVM using three database 
Database  WBCD HD PIMA 
Feature number 9 13 8 
Number of selection features(NSF) 2 5 2 
Interactive iteration number 3 3 1 
Overall  97.51 95.90 77.92 
sensitivity 98.04 98.48 59.59 
specificity 97.26 92.79 87.40 

In order to further evaluate the effectiveness of the proposed LS-SVM-MK, the classification 
results are compared with some other methods using the same dataset, including LS-SFM, GA-based 
SVM and LS-SVM. The results of the LS-SFM model and GA-based SVM model are quoted from the 
reference [14] and [15]. We summarized the results of the best model compared to the overall 
classification accuracy. And the results list as shown in Table III. As can be seen, our model for WBCD 
and HD database has the best classification results. PIMA database for our model is in the second pla 

Table 3.  Comparison of classification accuracy for three methods 
Model  WBCD HD PIMA 
 MK-LS-SVM 97.51 95.90 77.92 
 GA-based SVM 96.19 94.80 81.50 
 Best other 96.80 84.00 76.50 

ce,behind the GA-based SVM model. In comparison, mixture kernel least squares support vector 
machine performance is still very good. In addition, the model presented in this chapter can 
automatically select a subset of features. These results indicate that our method is very efficient in 
binary classification problem. The results show that there is only a small part of feature subset selected, 
so these results will greatly help the doctor for making a medical diagnosis. It should indeed be a better 
alternative as it can identify important independent variables which may provide valuable information 
for further managerial and related decision-makings. 

Conclusions 
Unlike SVM and weighted LS-SVM, the LS-SVM-MK is equivalent to get the minimum of a sum 
absolute error in the feasibility region. So this method can improve the robustness and get the 
sparseness for the solution simultaneously. Another advantage is that it is equivalent to solve a linear 
programming and do not increase the computational burden that much. In addition, the output of the 
LS-SVM-MK can be viewed as a weighted sum for different components. This makes the output more 
understandable. Furthermore, empirical results show that the LS-SVM-MK is very efficient in both 
classification and regression. 

Further work includes: making this method more suitable for large-scale datasets by modifying the 
algorithm and extending this idea to other kernel methods. In addition, how to make use of feature 
coefficients to reduce some features to make the model more simple and interpretable is another future 
work. 
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