Study on Calculation of PVT Properties of CO₂ in Supercritical States

LIU Hui^{*}

School of Mechanical Engineering, Xi'an Shiyou University, Xi'an, 710065, P.R. China

email: xibeiliu@163.com

Keywords: equation of state, carbon dioxide, supercritical state, thermodynamic properties, calculation.

Abstract. In this paper, two equations of state, Exp-RK and 81-type Martin-Hou, were chosen and adopted to calculate P-V-T properties of CO_2 in supercritical conditions, and the deviations of calculated pressure values from reference values are presented. The mean deviations of Exp-RK equation and 81-type Martin-Hou equation are 2.16% and 2.11% respectively, and the maximum deviations are 12.4% and -3.39% respectively. Study shows that the two equations are both applicable to the calculation of P-V-T properties of carbon dioxide in supercritical states. 81-type Martin-Hou has higher accuracy for the calculation of P-V-T properties in whole region and Exp-RK equation, a cubic equation of state, is simpler and more convenient for calculation of supercritical CO_2 for engineering purposes.

Introduction

Thermodynamic properties of CO_2 in supercritical conditions are needed in engineering fields. For example, both supercritical thermodynamic properties and saturated thermodynamic properties of CO_2 are involved in the analysis of transcritical cycle of CO_2 heat pump[1,2]. In petroleum industry, CO_2 is transported through pipeline in supercritical condition for large-scale delivery[3,4]. And supercritical carbon dioxide is often used as a solvent. Thus the calculation of thermodynamic properties of CO_2 in supercritical condition is necessary.

For the purpose of calculation of thermodynamic properties of a fluid, an equation of state describing P-V-T relationship is first needed. BWR equation was chosen for determining thermodynamic properties of CO_2 in supercritical conditions and the equation constants for CO_2 were given in literature [5]. In this paper, Exp-RK equation[6] and 81-type Martin-Hou[7] are chosen for the same calculation. The former is a modified RK equation, which was intended to improve the calculating accuracy of RK equation in supercritical region so as to expand the cubic equation of state to supercritical region. 81-type Martin-Hou equation of state is one that is applicable to both saturated liquid phase and saturated vapor phase of a fluid. These two equations of state are chosen in this paper to research their accuracy of calculation for the properties of supercritical CO_2 .

Choice of Equations of State

Exp-RK Equation of State. Exp-RK equation of state is a cubic equation of state and the constants of equation can be determined only with critical parameters of a fluid and therefore is convenient to use. Exq-RK equation is as follows.

$$P = \frac{RT}{V-b} - \frac{aa}{V(V+mb)} \quad . \tag{1}$$

$$m = 15.55 - 50Z_{c}$$
.

(2)

$$a = \Omega_a (RT)^2 / \rho_c \quad . \tag{3}$$

$$b = \Omega_b(RT) / p_c \quad . \tag{4}$$

$$a = \left[1 + k \left(1 - \sqrt{T / T_c}\right)\right]^2 \quad . \tag{5}$$

$$(\mathbf{m}\mathbf{b}_{C}+1) = (\mathbf{m}+1)^{1/3} \quad . \tag{6}$$

$$z_{c} = 1/[3 + (m-1)b_{c}] \quad .$$
⁽⁷⁾

$$\Omega_{\rm a} = z_{\rm C}^{2} / b_{\rm C} , \ \Omega_{\rm b} = z_{\rm C} b_{\rm C} \quad . \tag{8}$$

Where *P* - pressure (kPa), *T* - temperature (K), *V* - molar volume (m³ / kmol), *R* - gas constant (8.31451 kJ/kmol•K), P_C - critical pressure (kPa), T_C - critical temperature (K), Z_C - critical compressibility factor. For CO₂, T_C =304.2K, P_C =7376kPa, Z_C =0.274[8]

81-type Martin–Hou Equation of State. Original Martin-Hou equation was improved to extend to liquid phase in 1981, and is known as 81-type Martin–Hou equation of state in literature(abbr. 81 M-H equation in this paper).81 M-H equation has high accuracy of calculation for both saturated liquid and saturated vapor. Since it was published, 81 M-H equation has been widely applied [8, 9]. Literature [6] provided the constants of 81 M-H equation for saturated liquid and saturated vapor of CO₂. This paper chooses 81 M-H equation and these constants of CO₂ in literature [6] to research the applicability and accuracy of 81 M-H equation and these constants for the calculation of supercritical CO₂. 81 M-H equation is as follows

$$p = \frac{RT}{V-b} + \frac{A_2 + B_2T + C_2e^{-kT/T_e}}{(V-b)^2} + \frac{A_3 + B_3T + C_3e^{-kT/T_c}}{(V-b)^3} + \frac{A_4 + B_4T}{(V-b)^4} + \frac{B_5T}{(V-b)^5}$$
(9)

Where k = 5.475, p - pressure (atm), T - temperature (K), V - mole volume (cm³ / gmol), R- gas constant(82.055 atm•cm³/K•gmol). For CO₂, the constants of the Eq.(9) are shown in Table 1.

			2			
A_2	B_2	C_2	A_3	B_3	C_3	
-4519295.4	4676.0096	-79266871	327671590	-380994.25	5855596400	
A_4	B_4	B_5	b	$T_{\rm C}[{\rm K}]$		
-12896697200	15508608	374367850	20.188074	304.2		

 Table 1
 C constants of 81 M-H equation for CO2

Results and Discussion

The temperature range and pressure range of calculation are from 310 K to 600 K and from 7.5 MPa to 10 MPa respectively. The results and deviations of pressure calculation of Exp-RK equation and 81 M-H equation are shown in Table 2 and Table 3. Values in the columns T, V, and p are taken from literature [5, 10].

Deviation of calculation is determined according to

$$\boldsymbol{d}_{i} = \left(\boldsymbol{P}_{i} - \boldsymbol{P}_{cal,i}\right) / \boldsymbol{P}_{i} \times 100\% \quad .$$

(10)

Where $p_{cal,i}$ is the pressure value calculated with Eq.9 or Eq.10, and p_i is the reference value of pressure.

(11)

Mean deviation of calculation is determined according to

$$d_{mean} = \sum_{i=1}^{N} \left| d_i \right| / N$$
.

Where N is the number of calculation points.

Т	V	Р	P_{cal}	δ_i	Т	V	Р	P_{cal}	δ_i	
[K]	[cm ³ /gmol]	[bar]	[bar]	[%]	[K]	[cm ³ /gmol]	[bar]	[bar[[%]	
310	173.01	75	73.812	1.58	400	382.38	75	73.767	1.64	
310	133.0	80	79.123	1.10	400	354.74	80	78.708	1.62	
310	71.494	90	97.565	-8.41	400	308.76	90	88.616	1.54	
310	64.102	100	112.488	-12.49	400	272.1	100	98.571	1.43	
320	216.62	75	73.421	2.11	500	526.6	75	74.132	1.16	
320	189.6	80	78.455	1.93	500	492.16	80	79.098	1.13	
320	140.08	90	88.899	1.22	500	434.87	90	89.041	1.07	
320	97.919	100	101.088	-1.09	500	389.14	100	99.005	0.99	
350	292.83	75	73.429	2.09	600	654.73	75	74.265	0.98	
350	267.84	80	78.353	2.06	600	613.33	80	79.238	0.95	
350	225.95	90	88.274	1.92	600	544.4	90	89.192	0.90	
350	192.26	100	98.328	1.67	600	489.34	100	99.157	0.84	
δ_{mean} (%)			2.16							
δ_{max} (%) -12.49										

 Table 1
 Calculation results of Exp-RK equation

As can be seen from Table 2, the deviations of calculation values of pressure from reference values are, on the whole, small, the average deviation being only 2.16%. That shows that Exp-RK equation has a reasonable accuracy of calculation in supercritical region of CO_2 , though the equation has a simple form.

Т	V	Р	P_{cal}	$\delta_{ m i}$	Т	V	Р	P_{cal}	$\delta_{ m i}$
[K]	[cm ³ /gmol]	[bar]	[bar]	[%]	[K]	[cm ³ /gmol	[ba]r	[bar]	[%]
310	173.01	75	73.668	1.78	400	382.38	75	73.393	2.14
310	133	80	78.533	1.83	400	354.74	80	78.211	2.24
310	71.494	90	90.364	-0.40	400	308.76	90	87.804	2.44
310	64.102	100	103.391	-3.39	400	272.1	100	97.340	2.66
320	216.62	75	73.514	1.98	500	526.6	75	73.462	2.05
320	189.6	80	78.296	2.13	500	492.16	80	78.308	2.12
320	140.08	90	87.858	2.38	500	434.87	90	87.971	2.25
320	97.919	100	98.411	1.59	500	389.14	100	97.600	2.40
350	292.83	75	73.452	2.06	600	654.73	75	73.696	1.74
350	267.84	80	78.247	2.19	600	613.33	80	78.578	1.78
350	225.95	90	87.777	2.47	600	544.4	90	88.323	1.86
350	192.26	100	97.226	2.77	600	489.34	100	98.044	1.96
δ_{mean} (%)		2.11							
δ_m	_{ax} (%)		-3.39						

 Table 3
 Calculation results of 81 M-H equation

As can be seen from Table 3, the deviations of the calculation values of pressure from reference values are quite small in all states. The average deviation is only 2.11% and the maximum deviation -3.39%. *81 M-H equation* remains satisfactory accuracy of calculation in supercritical region of CO₂.

Conclusion

In this paper, Exp-RK equation of state and 81-type Martin-Hou equation of state are chosen for the calculation of PVT properties of CO_2 in supercritical states. The deviations of both equations for pressure calculation are small. 81-type Martin-Hou equation remains good accuracy of calculation in supercritical region of CO_2 , and can be used to calculate CO_2 properties in both supercritical region and saturation region. Exp-RK equation of state is simple in form and convenient in use, and has reasonable accuracy in supercritical region of CO_2 , and therefore it is a proper choice for the calculation of properties of supercritical CO_2 for engineering purposes.

References

[1] Zhang Xinrong, Liu Yong, Transcritical CO₂ Heat Pump: A Novel Highly Efficient and Environmental Friendly Heat Pump Technology, Tianjin Science & Technology, Vol. 42, No.3(2015) 25-27.

[2] Qin Haijie, Li Pengchong, Comparison of performance of CO₂ transcritical cycle and conventional refrigerant cycles, Refrigeration and Air-conditioning, No.2 (2014)50-53.

[3] Long Anhou , Di Xiangdong , Sun Ruiyan , Sun Xudong. Influencing factors of supercritical CO_2 transportation pipeline parameters. Oil& Gas Storage and Transportation, Vol. 32, No.1 (2013) 15 -19.

[4] Lu Cen, Transmission rules of CO_2 through pipelines and relevant operational parameters. Oil& Gas Storage and Transportation, Vol. 34(2015) 493 – 496.

[5] Xue Weidong, Zhu Zhenghe, zhang Guang-feng, Theoretical calculation of thermodynamic properties of supercritical CO2, Journal of atomic and molecular physics, 11(2004) 295-300.

[6] Liang Yanbo, Tong Jingshan, Analysis and improvement for the cubic equation of state and calculation of supercritical working Substances, Journal of Engineering Thermophysics, vol.18 (1997) 274-276.

[7] Hou Yujun, Zhangbin, Tang Hongqing, Extension of Martin-Hou equation of state into liquid region. Journal of Chemical Industry and Engineering (China), No.1 (1981) 1-10.

[8] Tong Jingshan, Thermal Physic Theory of Fluid, Sinopec Press of China, Beijng, 2008.

[9]Zhu Zhao-you, Zhang Fangkun, Xu Chao, Progress of research and application of Martin-Hou equation of state. Shanghai Chemical Industry, No.7 (2011) 12-15.

[10]Xue Weidong, Zhu Zhenghe, zhang Guang-feng, Theoretical calculation of the thermodynamic properties of CO₂, Journal of Atomic and Molecular Physics, No.1(2002) 24-26.