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Abstract. A new Lagrangian quadratic finite volume element method based on optimal stress points 
was presented for solving one-dimensional parabolic problem with trial and test spaces as the 
Lagrangian quadratic finite volume element space and the piecewise constant function space 
respectively. It is proved that the method has optimal order H1 and L2 error estimates. The numerical 
experiment confirms the results of theoretical analysis.  

1 Introduction 

The finite volume element method (FVEMS) is also called the generalized difference method 
(GDMS). The method that has a simple format structure, but also has the accuracy of the finite 
element method, and can keep the quantity of local conservation, it is an effective numerical method 
for solving partial differential equation of an effective numerical method, it has been widely used in 
computational fluid mechanics and electromagnetism, etc. At present there are a lot of research 
results for two-point boundary value problem of finite volume method. In the article , a new 
Lagrangian quadratic finite volume element method based on optimal stress points was presented for 
solving one-dimensional parabolic problem. It is proved that the method has optimal order H1 and L2 
error estimates. The numerical experiment confirms the results of theoretical analysis.  

 
2 Finite volume element format 

Consider the mixed problem of one-dimensional parabolic equations on interval I = [a, b] : 
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The associated weak formulation of problem (1) is:  
find 1( , ) : ( )(0 ),Eu u t U H I t T      such that  
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where ( , )  express the inner product of 2 ( )L I , ( , ) .
b t t

a
a u v pu v dx                                                   (3) 

So the solution of the equations (2) is called generalized solution of the problem(1)  
let a division mesh  hT for [ , ]I a b ,Nodes are 0 1 2 .na x x x x b       
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let 1 1/2 1
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And let the subdivision satisfy regularity conditions ( 1,2, ),ih h i n    is a positive number. Test 

space hU  as the Lagrange quadratic finite element space corresponding to hT . On the unit of 
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where 1( ) /i ix x h    

Then associated to hT dual mesh *
hT  ,let 1 21/ 2 3 / 6, 1/ 2 3 / 6,e e    then the two optimal 

stress points on interval 1[ , ]j jx x is 
1 21 2, ,j e j j j e j jx x e h x x e h     The dual unit node is  

 

1 2 2 10 .e e n e n e na x x x x x x b         

 
Test function space hV   take as piecewise constant function space corresponding to *

hT .suppose 
*

h is the Interpolation of the projection operator form hU  to hV . h is the Interpolation of the 

projection operator form U  to hU ,then                                                       
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Suppose J is a natural number, Time step is / .T J   define ( , ),g g x t t
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Then the Crank-Nicolson Fully discrete finite volume element format that Corresponding to  problem 
(1) is request ( 1,2, , ),n

h hu U n J   such that  
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Where 0hu  is a discrete approximation of 0 ( )u x , This paper take approximation 0h u  for 

interpolation or Elliptic projection 0 ,hR u then there has the following properties: 

0 0 , 0,1,r s
h s

u u Ch s      2 3r  .                      (9) 

 
 3  Error estimation 
 
Theorem 1 set u  is the solution of the problem (1) and n

hu  is the solution of Fully  

discrete finite volume element format (8), then 
1) 
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3)  If the initial value 0 0h hu u   or 0hR u , then there has the following superconvergence estimates: 
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4  Numerical experiments 
 
Consider parabolic problem: 
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The exact solution of the problem (10) is 1( ) sin .u x e x  
Comparing to the two methods show that the new method has a better convergence. 

 
 
Table 1 Convergence orders of the method (8) for the problem (10) 

n 
0

n n
hu u  Convergence 

order 1

n n
hu u  Convergence 

order 1

n n
h hu u  Convergence 

order 
8 52.4610 10   47.8417 10  51.0022 10   

16 62.9638 10  3.0537 41.9381 10 2.0165 61.0839 10  3.2089 
32 73.6684 10  3.0143 54.8315 10 2.0041 71.2952 10  3.0649 
64 84.5739 10  3.0036 51.2070 10 2.0010 81.5997 10  3.0173 
128 95.7138 10  3.0009 63.0170 10 2.0003 91.9935 10  3.0044 

 
 
Table 2 Convergence orders of usual quadratic FVEM for the problem    (11) 

n 
0

n n
hu u  Convergence 

order 1

n n
hu u  Convergence

order 1

n n
h hu u  Convergence

order 
8 41.0234 10   47.9049 10  41.0039 10   

16 52.6619 10  1.9248 41.9561 10 2.0147 52.6509 10  1.9211 
32 66.7229 10  1.9853 54.8780 10 2.0037 66.7162 10  1.9808 
64 61.6850 10  1.9963 51.2187 10 2.0009 61.6846 10  1.9952 
128 74.2153 10  1.9991 63.0463 10 2.0002 74.2150 10  1.9988 
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