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Abstract. A new Lagrangian quadratic finite volume element method based on optimal stress points
was presented for solving one-dimensional parabolic problem with trial and test spaces as the
Lagrangian quadratic finite volume element space and the piecewise constant function space
respectively. It is proved that the method has optimal order Hand L? error estimates. The numerical
experiment confirms the results of theoretical analysis.

1 Introduction

The finite volume element method (FVEMS) is also called the generalized difference method
(GDMS). The method that has a simple format structure, but also has the accuracy of the finite
element method, and can keep the quantity of local conservation, it is an effective numerical method
for solving partial differential equation of an effective numerical method, it has been widely used in
computational fluid mechanics and electromagnetism, etc. At present there are a lot of research
results for two-point boundary value problem of finite volume method. In the article , a new
Lagrangian quadratic finite volume element method based on optimal stress points was presented for
solving one-dimensional parabolic problem. It is proved that the method has optimal order H* and L?
error estimates. The numerical experiment confirms the results of theoretical analysis.

2 Finite volume element format
Consider the mixed problem of one-dimensional parabolic equations on interval | = [a, b] :

a—u—i(pa—u):f(x,t), (x,t) € (a,b)x(0,T]
ot OX
u(a,t) =0, 6“;?(’0 =0, te(0,T] 1)
u(x,0) =u,(x), x e (a,b)
1N, ) ) . . ou , au
Where peC(1); p(X) = p,;, >0; f € L°(1). for convenience, recording u, =E,u :a—.
X
The associated weak formulation of problem (1) is:
find u=u(,t)eU =H_/'(1)(0<t <T),such that
u,v)+a(u,v)=(f,v), vveU,0<t<T, @
u(x,0) =u,(x), X € (a,b)
where (-,-) express the inner product of L?(1),a(u,v) = J': pu'v'dx. (3)

So the solution of the equations (2) is called generalized solution of the problem(1)
let a division mesh T, for | =[a,b],Nodesare a=x, <X <X, <---<X, =b.
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let hy =X =X, % 4, =X,+h/2,i=12,---,n,h=maxh,

I<i<n

And let the subdivision satisfy regularity conditions h. > xh(i =1,2,---n), « is a positive number. Test
space U, as the Lagrange quadratic finite element space corresponding to T, . On the unit of
Ii = [Xi—l’ Xi]:
u, = ui—l(zf -1+ 4ui—1/2§(1_ &)+ U (25-)é=
2 -4 2\ u,

(62 ) 5!1) -3 4 -1 Uiy, (4)
1 0 O U;
Uy =U; 4 (45 =3) +U,;,,& (-85 +4) [ +u; (45 -1)& =
-4 4 (ui—lIZ _ui—l) / hi
(5’1)( 3 —J[ U -U ) I J ©

where &=(x—-x,)/h
Then associated to T, dual mesh T,” ,let e =1/ 2—\/5/6,e2 —1/2++/3/6,then the two optimal
stress points on interval [x; ,,X;]is X, =X; —eh;, X; . =X; —&,h;, The dual unit node is

1778

A=Xy <Xy <X <Xy <Xy <X, =D

-e, n—e n

Test function space V, take as piecewise constant function space corresponding toT, ~.suppose
[1,” is the Interpolation of the projection operator form U, to V, .1, is the Interpolation of the
projection operator form U toU, ,then
I[T,u—u|l <Ch*"u|,,m=0,1,YueU (6)
‘Hh* u, —uh‘o <Chlu,| ,vu, eU, (7)
Suppose J is a natural number, Time step is z =T / J. define g° = g(x,t,),t, = @z for every function
g(x,t) on Qx[0,T]. then define
0,9"=(9"-9"")/7,g"*=(g"+9"")/2 for sequence {g“}ano .
Then the Crank-Nicolson Fully discrete finite volume element format that Corresponding to problem
(1) isrequest u," €U, (n=1,2,---,J),such that
{(atuﬁ,vh)+a(ur?l’2,vh) =(f""%v,), Wy, eV, @)
Up = Ugy (X), x e (a,b)
Where u,, is a discrete approximation of u,(x), This paper take approximation [1, u, for
interpolation or Elliptic projection R,u,, then there has the following properties:
|luy —Ugy|, <Ch™*,5=0,1, 2<r<3. 9)

3 Error estimation

Theorem 1 set u is the solution of the problem (1) and uy, is the solution of Fully

discrete finite volume element format (8), then
1)
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Ju-up], <c {||u0 g, 1 g + 7 [t +
([ u [ty + ([ um||0dt)”2},n=0,1,2,---,J;
2)
Jor —uz], = € fJus —tanly 1 ol 0 [ L+ 2 ] n =002,

3) If the initial value uy, =11, u, or R,u,, then there has the following superconvergence estimates:

‘u” ~I1,u" lsC(h3+r2),
[% > | -u)) (o) T2 <C(h +72),
XN,

4 Numerical experiments

Consider parabolic problem:

2
a_u_a—lzjzo, 0<x<£,0<t£1,
ot ox 2
u(0,1) =0, Xy 1) =0 0<t<1 (10)
’ ot 2 ’ -
u(x,0) =sinx, 0<x<%.

The exact solution of the problem (10) is u(x) =e™*sin x.
Comparing to the two methods show that the new method has a better convergence.

Table 1 Convergence orders of the method (8) for the problem (10)

n ‘ u"—u’ Convergence ‘ u"—u’ Convergence ‘ u" -1, u"| Convergence
°  order order ' order
8  24610x10° 7.8417x10™ 1.0022x10°°
16 2.9638x10° 3.0537 1.9381x10*  2.0165 1.0839x10° 3.2089
32 3.6684x107 3.0143 4.8315x10°  2.0041 12952x107  3.0649
64 4.5739x10° 3.0036 1.2070x10°  2.0010 15997x10°  3.0173
128 5.7138x10° 3.0009 3.0170x10°  2.0003 1.9935x10°  3.0044

Table 2 Convergence orders of usual quadratic FVEM for the problem  (11)

n ‘ u"—u Convergence ‘ u"—u Convergence ‘ uf —IT, u" Convergence
°  order order ' order
8  1.0234x10* 7.9049x107* 1.0039x10™*
16 2.6619x10° 1.9248 1.9561x10™*  2.0147 2.6509x10°° 1.9211
32 6.7229x10° 1.9853 4.8780x10°  2.0037 6.7162x10°° 1.9808
64 1.6850x10° 1.9963 1.2187x10°  2.0009 1.6846x10°° 1.9952
128 4.2153x107"  1.9991 3.0463x10°  2.0002 4.2150x107' 1.9988
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