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Abstract. In this paper, we mainly apply the Wiman-Valiron theory to prove a theorem on growth 
of a linear differential equation. From this we obtain a uniqueness theorem concerning that a 
non-constant entire function and its derivative sharing a small entire function. 

Introduction 
In this paper, a meromorphic function f always means meromorphic in the whole complex plane. 

We assume that the reader is familiar with the fundamental results and the standard notions of 
Nevanlinna’s value distribution theory of meromorphic functions (see, e.g., [1], [2]), such 
as ( , ), ( , )T r f m r f . In the whole paper, the notation ( , )S r f is defined to be any quantity that 
satisfies ( ) ( )( ) ,    ,  S r f o T r f= as ∞→r outside of a possible exceptional set of finite logarithmic 
measure. A meromorphic function ( )a z  is called a small function with respect to ( )f z provided 
that ( )( ) ( ),    ,  .T r a z S r f=  

Let f and g be two non-constant meromorphic functions. We say f and g share some finite value 
a IM (ignoring multiplicities) provided that af − and ag − have the same zeros. 

If af − and g a− have the same zeros with the same multiplicities, we say that f and g share the 
value a CM (counting multiplexes). The subject on sharing values between a meromorphic function 
and its derivative was first studied by Rubel and Yang [5]. They proved 
that f f ′= if f and f ′ share two distinct finite constants CM. Mue and Steinmetz[3] pointed out 
that the same conclusion holds if the two CM shared values are replaced by two IM shared values. 
For one CM shared value, ckuBr  [9] raised the following famous conjecture which has been well 
studied. 

Conjecture A. (see [9]) Let f be a non-constant entire function such that )(2 fδ  < 1, and 

∉)(2 fδ N. If f and f ′ share a finite value a CM, then
f a c
f a
′ −

=
− , where c is a nonzero constant 

and 2 ( )fσ denote the hyper-order of f which is defined by 

2
log log ( , ) log log log ( , )( ) limsup limsup

log logr r

T r f M r ff
r r

σ
→∞ →∞

= =     (1.1) 

The case a = 0 and that ,

1( , ) ( , )N r S r f
f

= has been proved by ckuBr  [9], while the case that f is 

of finite order has been proved by Gundersen and Yang [4]. A natural question is that what can be 
said if a non-constant entire function f and one of its derivatives ( ) ( 1)nf n ≥ share a small entire 
function of f? We first recall the following two theorems related to this question. 

Theorem B. (see [7]) Let f be an entire function of finite order and a be an entire function of 
order less than the order of f. If f and f ′ share a CM, then ( )f a c f a′ − = − for some nonzero 
constant c. 
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Theorem C. (see [6]) If f is a non-constant solution of the differential 
equation ( )

1 2( )n Qf a e f a− = − where ( 1)n ≥ is a positive integer, 1a and 2a are two entire functions 
such that ( ) 1( 1,2)ja jσ < = , andQ is a polynomial with degree deg{ }Q , then 2 ( )f qσ = . 

For dealing with the above mentioned question, we prove the following theorem 1.1, which 
improves the results of Theorem B and Theorem C. 

Theorem 1.1 if f is a non-constant solution of the differential equation 
( )

1 2( )n Qf a e f a− = −  (1.2), where ( 1)n ≥ is a positive integer, 1a and 2a are two entire functions 
such that ( ) ( )( 1, 2)ja f jσ σ< = , and Q is a polynomial with degree deg{ }Q , then 2 ( )f qσ = . 

From Theorem 1.1, we immediately obtain the following Corollary 1.1. 
Corollary 1.1. Let f be an entire function of finite order and a be an entire function of order less 

than the order of f, and n be a positive integer. If f and ( )nf share a CM, then ( ) ( )nf a c f a− = −  for 
some nonzero constant c. 

Lemmas for the Proofs 

Let
0

( ) n
n

n
f z a z

∞

=

=∑ be an entire function. Next we define 

by { }( , ) max : 0,1,...n
nu r f a r n= = the maximum term of ( )F z  , and define by ( , )v r f  = 

max{m: ( , )v r f m
ma r= } the central index of F(z) (see [2]). 

Lemma 2.1. (see [2]) Let F be an entire function of order σ(F) = σ, and let ( , )v r F be the central 

index of F. Then log ( , )limsup
logr

v r f
r

σ
→∞

=   

The following Lemma 2.2 is well known as the Wiman-Varilon theory and is a useful device 
when considering the value distribution of entire functions of complex differential equations. 

Lemma 2.2. (see [2]) Let F be a transcendental entire function, and let 10
4

δ< <  and z be such 

that z r= and that  
1
4|F(z)| > M(r,F)v(r,F)

δ− +
                                                    (2.1)                                     

holds. Then there exists a set E ⊂ R+ of finite logarithmic measure such that                            
( ) ( , )( ) ( ) (1 (1)) ( )n nv r FF z o F z

z
= +                                                (2.2) 

holds for all m 0 and all r E≥ ∉   
Lemma 2.3. Let F be a transcendental entire function satisfying ( )Fσ σ= < ∞ , and let 0 < δ < 

1/4 and z be such that |z| = r such that (2.1) holds. Then for any given ε > 0, there exists a 
set E ⊂ R+ of finite logarithmic measure such that  

(1 ) ( ) (1 (1))
( )

n n
n

F zz o z
F z

σ ε− − ≤ ≤ +                                                (2.3)               

holds for all n ≥ 0 and all r ∉ E as |z| = r →∞ .Moreover, there exists an infinite 

sequence , [0, 2 )m
m m mz r eθ θ π= ∈ satisfying 0lim mm

θ θ
→∞

= and some constant ( ) 0R R ε= > and 

( )η ε  > 0 such that ( )
4

mr
n

n
m

eF z
r

σ ε−

≥ holds for all z satisfying mz r R= ≥ and 0 0arg [ , ]z θ η θ η∈ − +  
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Proof  Let ( , )v r F be the central index of F, and let 10
4

δ< < and z be such that z r= and that 

(2.1) holds. Then by Lemma 2.2, we know that there exists a set E ⊂R+ of finite logarithmic 

measure such that (2.2) holds for all holds for all n 0 and all r E≥ ∉ . Since 1
1 (1)o+

is also of 

type1 (1)o+ , we obtain from (2.2) that ( ) ( ) (1 (1))
( ) ( , )

n
n

F z z o
F z v r F

= + . 

From Lemma 2.1, we know that log ( , )limsup ,
logr

v r F
r

σ
→∞

=  which yields that ( , )v r F rσ ε+≤  for 

any given 0ε > as r →∞ .Hence 1

( , )
r r

v r F
σ ε− −≥ as r →∞ . Noting that ( , )v r F →∞ as r →∞ , we 

easily obtain that  
(1 ) ( )(1 (1)) (1 (1))

( )
n n

n

F zo z o z
F z

σ ε− −+ ≤ ≤ + as r →∞ , which is (2.3). Since 0 1
4

σ< < and 

( , )V r F →∞  as r →∞ , we have 
1
4( , ) 0v r F

δ− +
→  as r →∞ .This gives that there exists some 

0R  > 0 such that 
1
4 1( , )

2
v r F

δ− +
<  where 0r R> .For the given ε > 0, let , [0, 2 )mi

m m mz r e θ θ π= ∈  

be such that  ( ) ( , ) mr
m mf z M r F e σ ε−= ≥ on m mz r= . Obviously, there is a subset {

kmθ } of { }mθ  
satisfying 0lim [0, 2 )

k
k

mm
θ θ π

→∞
= ∈ . Without loss of generality, we suppose that 0lim mm

θ θ
→∞

= . Then there 

exists some 0( )R R Rε= > and some ( ) 0η η ε= >  independent of r such 

that 1 1( ) ( , )
2 2

mr
mF z M r F e

σ ε−

> ≥  on mz r=  and 0 0arg [ , ]z θ η θ η∈ − +  for all r R> . From (2.3), 

we immediately get ( ) ( )
( )

(1 (1))
n

n

F z
F z

o z
≥

+
, which yields that ( )

4

mr
n

n
m

eF z
r

σ ε−

≥  on mz r=  and 

0 0arg [ , ]z θ η θ η∈ − +  for all mz r R= > . 
Lemma 2.4. (see [8]) Let 1

1 0( ) ...n n
n nB z b z b z b−

−= + + + be a polynomial, where n is a positive 

integer and n is a positive integer and , [0, 2 )ni
n n nb e θα θ π= ∈ , For any given 0

4n
πε< < , we 

introduce 2n closed angles 

: (2 1) (2 1) ( 0,1,..., 2 1)
2 2

n n
jS j j j n

n n n n
θ θπ πε θ ε− −

+ − + < < + + − = − .Then there exists a positive 

number ( )R R ε= such that for z r R= <  , Re{ ( )} (1 )sin( ) n
nQ z n rα ε ε> − − . If jz S∈ , where j  is 

even; while Re{ ( )} (1 )sin( ) n
nQ z n rα ε ε< − −  If jz S∈ , where j  is odd. 

Lemma 2.5. (see [10]) Let F be an entire function of infinite order, with the 
hyper-order 2 2( )Fσ σ= , and let ( , )v r F  and let ( , )v r F  be the central index of F. Then 

2
log log ( , )limsup

logr

v r F
r

σ
→∞

=  

Proof of Theorem 1.1 

Set 2F f a= − , then F is an entire function and
( )( ) ( )

2

nn nf F a= + , substituting 2f F a= +  and 
( )( ) ( )

2

nn nf F a= + into (1.2), we get 

81



( ) ( ) ( )
1 2

n Q z nF e F a a= + −                                                          
(3.1)                   

Denote ( )
1 2

nb a a= − , then we have 
( ) ( )n Q zF e F b= +                                                                

(3.2) 
Obviously, b is a finite order entire function and 1 2( ) max{ ( , )} ( ) ( )b a a f Fσ σ σ σ≤ < = . It is well 

known that all solutions of (3.2) are entire functions. We then prove the following cases: 
Case 1: Q is a constant, then 0Qe c= ≠ . Thus we can write (3.2) as 

( )nF cF b= +                                                                 
（3.3） 

We claim that F is an entire function of finite order. Otherwise, we suppose that ( )Fσ = ∞ .Let 
10
4

δ< < and z be such that z r= and that (2.1) holds. Then by Lemma 2.2 there exists a set 

E R+⊂ of finite logarithmic measure such that (2.2) holds for all n ≥ 0 and all r E∉ .Hence we 
have     

( , )( ) (1 (1))mv r F bo c
z F

+ = +                                                       

(3.4) 
Note that F is an entire function of infinite order. For any given constant N > 0, 

let , [0, 2 )mi
m m mz r e θ θ π= ∈  be such that ( ) ( , )m mF z M r F= on m mz r=   

By Lemma 2.5, we know that there is an infinite sequence ,{ }mr  such that  
,

2,

log log ( , )lim ( )
logm

m

r
m

v r F F
r

σ
→∞

= . 

Set the logarithmic measure of E, lmE =δ < ∞, then there is a point mr  , ,[ , ( 1) ) /m mr r Eδ∈ + , 
since  

, ,

,
,

,

log log ( , ) log log ( , ) log log ( , )
log( 1)log log( 1) log [1 ]

log

m m m

m m
m

m

v r F v r F v r F
r r r

r
δδ

≥ =
++ +

 ,  

We have 2
log log ( , )lim ( )

logm

m

r
m

v r F F
r

σ
→∞

= . 

Obviously, we have log ( , )lim
logm

m

r
m

v r F
r→∞

= ∞                                         (3.5) 

From (3.5), we obtain that 2( , ) mrN
m mr v r F e

σ ε+

≤ ≤ for any 0ε > and any big real 
constant 0N > as mr →∞ .For convenience, we denote all such points by{ }mz . Since ( )Fσ = ∞ , 

then there exists a subset{ }jz of { }mz satisfying
0

( , ) jr
jM r F e

σ ε+

≥ as jr →∞ . Denote 0( )bσ σ= , then 

for the given 0ε > , we have
0

( ) jr
jb z e

σ ε+

≤ as jr →∞ .Let 0max{1, }N σ ε> + . We see that the 

module of the right hand side of (3.4) tends to |c| as jr → ∞ while the module of the left hand side of 

(3.4) tends to c as jr →∞ , which is impossible. Thus we obtain that F must be of finite order, and 
therefore 2 2( ) ( ) deg{ } 0f F Qσ σ= = = . 

Case 2: ( )Q z   is a non-constant polynomial with deg{ ( )} 1Q z q= ≥ .We first proving that F is 
of infinite order. Otherwise, since ( )Q z is a non-constant polynomial with deg{ ( )} 1Q z q= ≥ , we 
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may suppose that F is an entire function of finite order satisfying1 ( )Fσ σ≤ = < ∞ , we rewrite (3.2) 
as the following form 

( )
( ) ( )

( )1Q z
n n

F b ze
F F

= −                                                              

(3.6) 

Let 10
4

δ< < and z be such that z r= and that (2.1) holds, then by Lemma2.3, there exists a 

set E R+⊂ of finite logarithmic measure such that 
(1 ) ( )(1 0(1)) (1 (1))

( )
n n

n

F zz o z
F z

σ ε− −+ ≤ ≤ +                                        (3.7) 

For all r E∉ as r →∞ , Moreover, for any given ε > 0, there exists an infinite 
sequence , [0,2 )m

m m mz r eθ θ π= ∈ satisfying 0lim [0,2 )mm
θ θ π

→∞
= ∈  and some 

constants 0 ( ) 0R R ε= > and ( ) 0η η ε= > such that ( ) ( )
mr

n
n

m

eF z
r

σ ε−

≥ holds for all z such 

that 0mz r R= ≥ and 0 0arg [ , ]z θ η θ η∈ − + .Note that 0( ) mrb z e
σ ε+

≤ as mr →∞ . Hence we have 
0

0( )

( )
( )

m

m

rn
m

n r

r eb z
F z e

σ ε

σ ε

+

−≤  Let 00
2

σ σε −
< < , then from the above equation we obtain that the module 

of right hand side of equation (3.6) tends to 1 as r → ∞. On the other hand, denote ( ) ...q
qQ z zα= +  

and qi
q q e θα α= , then from Lemma 2.4, we know that for the given ε satisfying 0 < ε 

< 0min{ ,2 , }
4 2q

σ σπ η − , if we introduce 2q closed angles 

: (2 1) (2 1) ( 0,1,..., 2 1),
2 2

q q
tS t t t n

q q q q
θ θπ πε θ ε
− −

+ − + < < + + − = −   

Then there exists a positive number 1 ( )R R ε= such that for 1z r R= > , 

Re{ ( )} (1 )sin( ) q
qQ z q rα ε ε> −                                                 (3.8) 

If tz S∈ , where t is even; while 

Re{ ( )} (1 )sin( ) q
qQ z q rα ε ε< − −                                               (3.9) 

If tz S∈ , where t is odd. Thus for all mz r E= ∉ , 

when mz r= satisfying 0 1max{ , }mr R R> and 0 0arg [ , ]z θ η θ η∈ − + , if tz S∈ , where t is even, from 

(3.7) and (3.8) we have (1 )sin( )( )
( ) (1 (1))

q
q m nq rQ z

n

Fe e o z
F

σ εα ε − −≥ + , a contradiction to the right hand 

side of (3.6) when we let mr →∞ , if tz S∈ , where t is odd and 0 0arg [ , ]z θ η θ η∈ − + , from (3.7) and 

(3.9) we have sin( )( )
( ) (1 (1))

q
q m nq rQ z

n

Fe e o z
F

α ε−≤ + , a contradiction to the right hand side of (3.6) 

when we let mr →∞ . Hence ( )F z must be of infinite order. Now we prove 

that 2 2( ) deg{ }F Q qσ σ= = = , let 10
4

δ< < and z be such that (2.1) holds on z r= . Then there exists 

a set E R+⊂ of finite logarithmic measure such that (2.2) holds for all 0n ≥ and all r E∉ . Note that F 
is an entire function of infinite order. For any constant 0M > , let , [0, 2 )mi

m m mz r e θ θ π= ∈  be such 

that ( ) ( , )
M

mr
m mf z M r F e= ≥ on m mz r= . From the above reasoning, we may suppose 
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that 0lim [0,2 )
m

mr
θ θ π

→∞
= ∈  and that the infinite sequence{ }mr satisfies (3.5), then for any 0,ε >  we 

have 
2( , ) mrM

m mr v r F e
σ ε+

≤ ≤ as m →∞ , By Lemma 2.2 and (3.2) we have 
( )( , ) ( )( )n Q zv r F b ze

z F
= +                                                      (3.10) 

Since 0rb e
σ ε+

≤ as r →∞ , let 0M σ ε> + , then we obtain from (3.10) that 

( )( , ) 2( 1) 2
q

m m

n
Q z rm

m

v r F e e
z

ε+

≤ + ≤                                               (3.11) 

Sinceε is arbitrary, then from (3.11) and Lemma 2.5 we obtain that 2 qσ < . Now we suppose 

that 2 qσ < . Note that there exists some 2 0R > such that 
1
4 1( , )

2
v r F

δ− +
< when 2r R> , then for the 

infinite sequence mi
m mz r e θ= satisfying  

0lim [0,2 )
m

mr
θ θ π

→∞
= ∈ , there exists some 3 2R R> and some 0η > independent of r such 

that 1( ) ( , )
2 2

M
mr

m
ef z M r f> ≥ on mz r= and 0 0arg [ , ]z θ η θ η∈ − + for all 3mr R> . 

Then ( ) 0
( )

b z
F z

→ as r →∞ in (3.10). Then from (3.10), we can get that 

2

( 1) ( ) (1)
mnr

n M Q z
m n

m

er e o
r

σ ε+

− ≤ ≤ +                                                 (3.12) 

Let 1M > and select 0ε > satisfying 20 { ,2 , }
2 4

q
q

σ πε η−
< < , we see that the above equation 

contradicts with (3.8) and (3.9) when mz r= is large enough. This leads to that 2 qσ = .We 
complete the proof. 
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