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Abstract. An optimal stochastic problem of production scheduling for uncertain re-entrant assembly 
workshops (URAWs) was studied, in which the assembly process is repeated on the basis of quality 
inspection result and the number of repeats is uncertain. According to analysis of URAWs, a 
stochastic expected value model of production scheduling was built up. In order to solve the model 
conveniently, the model was then converted into a deterministic model. A genetic simulated 
annealing algorithm based on feasible region (FR-GSAA) was designed to solve this model. Finally 
the result of simulation examples indicates that the model and the algorithm are feasible and practical. 

Introduction  
Reasonable scheduling is the core of enterprise production management. The problem of 

production scheduling has also been one of the hotspot issues that many scholars focus on. Previous 
research of scheduling concentrated on the certainty problems[1-3], while recently scheduling with 
uncertain factors, such as demand fluctuation[4], production capacity change[5] and process time 
inaccuracy[6], has gradually caught scholars’ attention. In actual production, the different 
manufacturing processes in one job may repeat at the same equipment. The number of repeats 
depends on the process result of the previous operation and it is uncertain. In this paper, it is defined 
as uncertain re-entrance which appears primarily in manufacturing industries with high value, high 
precision and low output. At present, there is little research on scheduling for uncertain re-entrant 
assembly workshops (URAWs).  

The uncertainty of re-entrance is a random event and can be generally described by stochastic 
variables. Thus, scheduling for URAWs is a stochastic programming problem, of which the main 
methods include expected value models, chance-constrained programming and dependent chance 
programming. The latter two methods are used to solve the problem that constraints contain 
stochastic variables. In this paper, the scheduling objective function contains stochastic variables. 
Therefore, we use the method of stochastic expected value to establish the scheduling model for 
URAWs, and design a genetic simulated annealing algorithm based on feasible region (FR-GSAA) to 
solve this model. At last, the specific numerical example proves the validity of the model and 
algorithm.  

The Scheduling Model of URAWs  

Problem Description. There are N  types of products and each type needs nx  products in the 
assembly workshops. Every product is constructed by nI  jobs, and every job contains j  operations. 
Each operation is assembled by corresponding assembly classes. There are M  assembly classes in 
the assembly workshop, and every class includes mG  assembly teams that have the same function and 
skills. Different child jobs owning the same parent job can be assembled at the same time, while 
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different operations of one job must be assembled in order. After completing assembly, the product 
needs to be inspected strictly before left factory. If it is defective, the product must reenter into the 
workshop and repeat all the operations. The times of re-entrance is unlimited. The passing probability 
of the quality inspection is known as nP , and the different inspection events of one product are all 
independent. The diagram of the assembly tree structure is shown as Fig. 1. In Fig. 1, a-b-c expresses 
that the b th operation of job a is assembled by assembly class c. 
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Fig. 1.  Assembly tree structure of product type 1 

Scheduling Model. The aim of scheduling is to minimize the total weighted completion time of 
all products. The assembly sequence of every operation for all products needs to be determined. 
Every operation needs to be assigned to the spare assembly team. And the starting time and the 
completion time of every assembly team also need to be arranged. 

Symbols: 
n : index of product types, 1, 2, ,n N= 2 , N  is the number of all the product types； 
e : index of assembly quantity in product type n , 1, 2, , ne x= 2 , nx  is the quantity of type n ; 
i : index of job, 1, 2, , ni I= 2 , nI  is the number of jobs in type n ; 
l : index of re-entrant repetition, =1,2, , ( )nl E L2 , ( )nE L  is the expected value of re-entrant 

repetitions in type n  when it is qualified in quality; 
j : index of operation, 1, 2, , nij J += 2 , niJ +  is the number of operations in the i th job of type n ; 
m : index of assembly class, 1, 2, ,m M= 2 , M  is the number of assembly classes; 
g : index of assembly team, 1,2 , mg G= 2 , mG  is the number of assembly teams in assembly class 

m ; 
a : index of assemble times by assembly team, 1,2, , mga A= 2 , mgA  is the maximum assemble 

times by team g  of class m ; 

nelijO : the j th operation of job i  in the e th product of type n  when it reenters into workshop at the 
l th time; 

( )nelij
O + : parent operation of nelijO ; 

( )nelij
O − : child operation of nelijO ; 

[ ]+• : max(0, )• . 
Parameters: 

mgβ : available time at assembly team g  of class m ; 

nijp : assembly time of operation j  in the i th job of type n ; 

nt : sum of quality inspection time and disassembly time in type n ; 

nω : weight coefficients of type n ; 

nP : passing probability of quality inspection. 
Decision variables: 

nelijgδ : 0-1 variable, if nelijO  is assigned to team g , then nelijgδ =1, otherwise nelijgδ =0; 

nelijgaρ : 0-1 variable, if nelijO  is assembled by team g  at the a th time, then nelijgaρ =1, otherwise 

nelijgaρ =0; 
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nelijS : start time of nelijO ; 

nelijC : completion time of nelijO ; 
� nelC : completion time of the e th product of type n  when it reenters into workshop at the l th time; 

mgaS : start time at team g  of class m  at the a th time; 
mgaC : completion time at team g  of class m  at the a th time; 

Model: 

� , , ( )
1 1

E M in
n

n

xN

n e E Ln
n e

J Cω
= =

 
=  

 
∑∑ ;                                                                                                    (1) 

S.t. 
( )nelij nelij

C S +≤ , , , , ,n e l i j∀ ;                                                                                                            (2) 
�

, , 1, ,1nel n n e l iC t S ++ ≤ , , , ,n e l i∀ ;                                                                                                        (3) 

, , , , 1n e l i j nelijC S− ≤ , , , , ; 2,3, , nin e l i j J +∀ = 2 ;                                                                                       (4) 

nelij nij nelijS p C+ = , , , , ,n e l i j∀ ;                                                                                                       (5) 
�

, , , ,n ni
nel n e l I J

C C += , , ,n e l∀ ;                                                                                                                (6) 

=1
1

mG

nelijg
g
δ =∑ , , , , ,n e l i j∀ ;                                                                                                               (7) 

1

mgA

nelijga nelijg
a

ρ δ
=

=∑ , , , , , ,n e l i j g∀ ;                                                                                                   (8) 

1
rP ( ( ) ) (1 ) , 1, 2,K

n n nE L K P P K−= = − ⋅ = ;                                                                                  (9) 
{0,1}, , , , , ,nelijg n e l i j gδ ∈ ∀ ;                                                                                                         (10) 
{0,1}, , , , , , ,nelijga n e l i j g aρ ∈ ∀ ;                                                                                                    (11) 

0nelijS ≥ , , , , ,n e l i j∀ .                                                                                                                  (12) 
Eq. (1) is the objective function; Eq. (2) ensures the sequence between parent operations and child 

operations at the same re-entrant stage; Eq. (3) ensures the sequence between the last operation at 
some re-entrant stage and the first operation at the next re-entrant stage; Eq. (4) ensures the sequence 
between the former operation and the latter operation of one job; Eq. (5) expresses that once an 
operation is started, it cannot be preempted until it is completed; Eq. (6) means that completion time 
of the e th product in type n  when it reenters into workshop at the l th time, equals to completion 
time of the last operation in its root node job; Eq. (7) expresses that one operation can be assigned to 
one assembly team only; Eq. (8) means that no two operations can be assembled simultaneously on 
the same assembly team; Eq. (9) is the probability distribution function of the re-entrant times. 
Because the different inspection events of one product are regarded as independence, ( )nE L  obeys 
the geometric distribution of parameter nP ; Eq. (10), (11) and (12) express the range of decision 
variables. 

Eq. (1)-(12) are the stochastic programming model. In order to solve conveniently, it is converted 
into a deterministic model. Since the times of re-entrance obeys the geometric distribution 
of parameter nP , its expected value is as follow[8]: 

     1( )=n
n

E L
P

.                                                                                                                                 (13) 

Therefore, the model is converted into a deterministic model by plugging    Eq. (13) into Eq. (1) 
and adding Eq. (13) as constraints. The objective function is transformed into Eq. (14), and the rest 
constraints are as Eq. (2)-(12): 
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FR-GSAA 
Algorithm Flow. Genetic algorithm (GA) has strong capability of global search. However, it will 

be missing the optimal solution because it emphasizes the evolution between two generations. Thus 
its local search ability is inferior[9]. Simulation annealing algorithm (SAA) is skilled in local search, 
because it receives inferior solution besides optimized solution[10]. As a result, combining the 
advantages of GA and SAA and considering scheduling constraints, FR-GSAA is presented. 
Arithmetic flow of FR-GSAA is as follow:  

Step 1: Initialize the parameters of FR-GSAA, such as population size, crossover rate, 
mutation rate, the maximum genetic generation, initial temperature 0T , terminated temperature of 
simulated annealing and so on. Set the current genetic generation 1gen = , the times of annealing 
temperature updates 1θ = , and the current temperature 0=T T ; 

Step 2: Initialize the population. Repair every chromosome of the population in order to satisfy all 
the scheduling constraints and get feasible initial population ( )P genθ ; 

Step 3: Select two parents from population ( )P genθ , and calculate the objective function of them as 
( )fJ genα  and ( )fJ genβ . Cross two parents with crossover rate and get two new chromosomes. 

Calculate the objective function of the new as ( )zJ genα  and ( )zJ genβ ; 
Step 4: Based on the probabilities of acceptance Pα  and Pβ  obtained by Eq.  (15) and (16), 

determine whether to accept new chromosomes.  Then get population ( )PZ gen ; 
1 ( ) ( )

( ) ( )
exp[ ] ( ) ( )

f z

z f
f z

J gen J gen
P J gen J gen

J gen J gen
T

α α

α α α
α α

>
=  −

≤

.                                                            (15)  
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P J gen J gen

J gen J gen
T

β β

β β β
β β
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=  −
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.                                                             (16) 

Step 5: Select one chromosome from population ( )PZ gen . Mutate it with mutation rate and get a 
new chromosome. Calculate the objective function of the new as '( )bJ geng ; 

Step 6: Based on the probability of acceptance Pγ  obtained by Eq. (17), determine whether to 
accept the new chromosome.  Then get new population ( 1)P genθ + ; 

1 ( ) '( )
'( ) ( )

exp[ ] ( ) '( )

b b

b b
b b

J gen J gen
P J gen J gen

J gen J gen
T

g g

g g g
g g

>
=  −

≤

.                                                           (17) 

Step 7: 1gen gen= + . If gen  is greater than the maximum genetic generation, then go to Step 8, 
otherwise go to Step 3; 

Step 8: Update current temperature T  according to Eq. (18). If T  is lower than terminated 
temperature, stop the algorithm; otherwise set 1(1) ( )P P genθ θ+ = , 1, 1genθ θ= + =  and go to Step 3. 

 0( )
1

TT θ
θ

=
+

.                                                                                                                              (18) 

Algorithm Design. Encoding: The chromosome contains 
1 1 1

( ) ( )
n nx IN

ni n
n e i

J E L+

= = =

⋅∑∑ ∑  gene blocks, each 

of which consists of two parts. One part represents the information of jobs. Use the string 
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encoding format and encode it with - - -n e l i . The different operations of one job use the same string, 
and it is expressed by its location of gene block in chromosome. The other part represents the 
information of assembly class and team where the operation is assembled. Use the string 
encoding format as before and encode it with .m g . 

Initial Population: Construct
1
[ ( )]

N

n n n
n

x I E L
=

⋅ ⋅∑   types of gene blocks firstly and form the strings of 

- - -n e l i  in every block generate in turn within feasible region. The number of every block type is niJ + . 
Then sort all the gene blocks randomly. Finally, initialize the strings of .m g in every gene blocks 
within feasible region. 

Chromosome Repairing: The initial population is generated without considering assembly 
constraints, therefore the chromosome must be repaired. Every gene block corresponding to the 
operation must be sorted by re-entrance times and arranged by the sequence between parent operation 
and child operation. 

Selection Operation: The classical roulette method is adopted[9]. 
Crossover Operation: Choose randomly a gene block corresponding to non leaf node in every type 

of products. Then select all gene blocks corresponding to its child operations from two parent 
chromosomes, and exchange them.   

Mutation Operation: Select a gene block randomly, and move it to a new position within the 
feasible range. Considering the assembly constraints, the feasible range is the intersection between 
the range of parent-child operation and the range of other operations of this job corresponding to this 
selected block. 

Examples  
Suppose that we have an assembly workshop with 5 assembly classes and 19 assembly teams, and 

the numbers of assembly teams in assembly classes are [3,5,4,3,4]. Assume that there are 5 types of 
products, and the assembly tree structure of type1 is shown as Fig. 1. Other parameters no longer list 
due to the limit of space. The requirement quantities of 5 types are [3,2,4,5,2], and the passing 
probabilities of the quality inspection are [0.25,0.5,0.5,0.5,0.3]. Considering characteristics of the 
model, we set population size to 50, generations to 100, crossover rate to 0.9, mutation rate to 0.3, 
initial temperature to 100, and terminated temperature to 1.    

FR-GSAA proposed in this paper has been implemented through Matlab R2013b. This program is 
realized on an Inter Core i5 4210U CPU 2.54GHz PC with 4G memory. The optimized result 
of total completion time is 556.68, and the scheduling result is shown as Fig. 2. The result indicates 
that the model and the algorithm are feasible and effective. 

 
Fig. 2. Gantt chart of scheduling result 
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Conclusions 
In this paper, we establish the scheduling model for URAWs, and propose FR-GSAA to get 

the optimization solution for the characteristics of model. Thereinto, we build up the stochastic 
expected value model aiming at the uncertainty of reentrance times, design methods of encoding, 
repairing, crossover operation and mutation operation based on feasible region considering the 
assembly constraints, and adopt genetic simulated annealing algorithm to get the solution of assembly 
sequence and assembly teams assignment. Finally, the result of simulation examples demonstrates the 
effectiveness and feasibility of the model and algorithm. 
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