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Abstract. This paper addresses the problem of wideband time-frequency-varying signal sub-Nyquist 
sampling and reconstruction based on compressed sensing (CS) framework. We propose a system of 
blind and sparsity level adaptive signal reconstruction for wideband signals with sub-Nyquist 
sampling. We utilize modulated wideband converter (MWC) that deals well with multi-band signals 
to acquire sub-Nyquist samples, change the signal sensing and reconstruction model to parameters 
estimation model in the array signal processing, and apply iterative adaptive approach (IAA) to 
recover spectral support and reconstruct signals simultaneously without any prior knowledge. 
Simulation results show that the proposed method outperforms the continue to finite (CTF) following 
MWC in low signal-to-noise ratio (SNR). 

Introduction 

A major challenge in wideband spectrum sampling is the requirement of a high sampling rate 
which may exceed today’s best analog-to-digital converters (ADCs) front-end bandwidths. Moreover, 
such high sampling rate will generate a large number of samples to process, affecting speed and 
power consumption [1]. 

To overcome the rate bottleneck, a number of compressed sensing (CS) [2,3] structures proposed 
for sub-Nyquist sampling enable sampling below Nyquist rate, without (or with little) sacrificing 
reconstruction quality [4]. The modulated wideband converter (MWC) [5,6] is one of the most 
successful structures. It can not only treat multiband signals, but be realized by off-the-shelf 
commercial components. 

As the sparsity level of time frequency varying signal is often unknown, it will be a challenge of 
using CS in practical sensing hardware. Following MWC, a block entitled continue to finite (CTF) [5] 
is proposed to recover the spectral support and reconstruct signals from MWC compressive samples 
and it works well with continue time signals. Unfortunately, it must need a band number (sparsity 
level) priori or set a maximum band number (superfluous signals will be ignored). Moreover, the 
method that uses Moore-Penrose pseudoinverse to reconstruct signal is sensitive to noise in dealing 
time-frequency-varying signal conditions.Recently, an alternative data-dependent approach [7] has 
been proposed for signals exhibiting a sparse representation in array signal processing. In [8], the 
so-called iterative adaptive approach (IAA), which is nonparametric, hyperparameter, free-weighted, 
and least squares-based (LS), was proposed for passive sensing, range-doppler imaging, and channel 
estimation applications in array processing. 

In this paper, we propose a blind and sparsity level adaptive reconstruction of wideband 
time-frequency-varying signals method that would also bring substantial saving in terms of the 
sampling rate. In the proposed method, we use MWC to acquire sub-Nyquist samples, and change the 
signal sensing and reconstruction model to parameters estimation model in array signal processing. 
Then, we apply IAA to recover spectral support and reconstruct signals simultaneously without any 
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prior knowledge. Simulation results demonstrate that the method outperforms the CTF framework 
and has a perfect effect in low signal-to-noise (SNR). 

Modulated Wideband Converter 
As shown in Fig. 1, the modulated wideband converter (MWC) [6] consists of an analog front-end 

with m channels. In the ith channel, the input signal x(t) is multiplied by a periodic waveform pi(t), 
lowpass filtered, and then sampled at rate fs = 1/T. 
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Fig.1 The modulated wideband converter structure 

Consider the ith channel. Since pi(t) is Tp-periodic (Tp = 1/fp), it has a Fourier expansion 
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Then, the discrete-time Fourier transform (DTFT) of the ith sequence yi[n] is 
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where L0 is the smallest integer satisfying L = 2L0+1 ≥ fnyq/fp, fnyq is the Nyquist rate of x(t). 
Therefore, 2( )j fT

iY e p  is a linear combination of fp-shifted copies of ( )X f . 
It is convenient to rewrite Eq. (2)  in matrix form 

( ) ( ), [ 1/ 2 ,1/ 2 ].f f f T T= ∈ −Y AZ                                                                                          (3) 
For each [ 1/ 2 ,1/ 2 ]f T T∈ − , Y( f ) is a vector of length m with the ith element Yi( f ) = Yi(ej2πfT) 

which is discrete time Fourier transform (DTFT) of yi[n]. The unknown vector Z( f ) is of length L 
with the lth element given by Zl( f ) = X(f + lfp), where X( f ) is the Fourier transform of x(t), −L0≤ l 
≤L0. The m × L sensing matrix A consists of the coefficients *

,il i l ilA c c−= = , 1 ≤ i ≤ m..  

WMC with Iterative Adaptive Approach 
For the sake of simplicity, we choose fs=fp in MWC parameters. We use inverse-DTFT for both side 
of Eq. 3, and then we get measurement function in time domain 

[ ] [ ], 1, 2,..., ,k k k K= =y Az                                                                                                         (4) 
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where 1 2[ ] [ [ ], [ ],..., [ ]]T T T T
mk y k y k y k=y , yi[k] is the ith channel MWC compressive sample sequences, 

and 1 2[ ] [ [ ], [ ],..., [ ]]T T T T
Lk z k z k z k=z , zi[k] is the inverse-DTFT of ( )iZ f , K is the snapshot number. So, 

the sequences zi[k] are generated at the input rate fs. 
In order to use iterative adaptive approach (IAA) to recover spectral support and reconstruct 

original signals adaptively, we relate the MWC sampling model to parameters estimation model in 
array signal processing. In the MWC sampling model, we can treat each frequency band zl[k] as 
independent signals with the same received frequency. The sensing matrix A = [a1,…,aL] which is 
column conjugate symmetric is then changed to be the steer matrix in array model, where al is the lth 
column of A. 

IAA solves Eq. 4 by minimizing the following LS cost function 
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is the IAA interference and noise covariance matrix, where Pl denotes the signal power at grid point l 
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The IAA covariance matrix R has the expression 

H=R APA                                                                                                                                    (8) 
where P is a diagonal matrix with diagonal entries from the vector 1[ ,..., ]T

LP P . 
Using Eq. 6 and the matrix inversion lemma, minimizing Eq. 5 with respect to zl[k], k=1,2,…,K, 

yields the estimation of zl 
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Fig.2 The power spectrum distribution estimated by MWC-IAA 

Fig. 2 plots the signal power Pl at different grid point. From Fig. 2, we can easily find the signal 
spectral support S (the five indexes that have maximum values). Our empirical experience is that 
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MWC-IAA does not provide significant improvements in performance after about 6 iterations. Once 
the support is found, the signal sampled at based band can be acquired 
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In order to get the original signal, we only need to interpolated zl[k] to the Nyquist rate and 
modulate it the original band indexed by the support S. 

Numerical Results 
Computer simulation is presented in this section to verify the performance of the proposed method 

compared with CTF framework [9]. 
In the following experiment, the number of potentially active transmissions Nsig is set to be six. 

Each transmission is PSK modulation with two side bandwidth not than 50 MHz, random 
transmitting time and duration. Their carrier frequencies are drawn uniformly at random between [0, 
5] GHz, namely, the Nyquist sampling rate fnyq is at least 10 GHz. We choose channel number m=50, 
mixing function period fp=51.28 MHz, L=195 (calculated by fnyq/fp), each channel sampling rate fs=fp 
and samples number is K = 90. The received signal is polluted by Gaussian noise which is added and 
scaled so that the test signal has the desired signal-to-noise ratio (SNR). In the experiment, we assume 
that the MWC-CTF has a band number priori, but the proposed MWC-IAA still has no priori. Each 
experiment is repeated over 500 realizations. 
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(b) The STFT of signal reconstructed by MWC-CTF 
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(c) The STFT of signal reconstructed by MWC-IAA 

Fig.3 The STFT of (a) original signal (b) signal reconstructed by MWC-CTF (c) signal reconstructed 
by MWC-IAA with SNR=-5dB 

In Fig. 3, there are six time-frequency-varying signals with different starting time, time duration 
and frequencies in the SNR = -5dB condition. Fig. 3 plots the STFT of original signal, reconstructed 
signal by MWC-CTF and MWC-IAA respectively. Clearly, in low SNR conditions, the MWC-CTF 
has reconstructed false frequencies at the free time of the signal transmission or brought in more noise. 
If we have no band number priori, the result will be much worse. Comparatively, the proposed 
MWC-IAA has almost perfectly reconstructed the signal at the right time and frequencies with less 
noise. 

In order to evaluate the quality of reconstruction, we apply a criterion named similarity degree [10] 
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where u  is the estimation of u. If u  approaches to u, the similarity degree comes near to 1. On the 
contrary, the degree approaches to 0. 
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Fig.4 The similarity degree comparison 
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Fig. 4 plots the similarity degree between reconstructed signal (by proposed MWC-IAA and 
MWC-CTF respectively) and original signal (without noise) with different SNR. As can be seen from 
this figure, both of the waveform similarity degrees increase with the SNR. It is clear that the 
reconstructed performance can be improved better under better SNR conditions. When the SNR is 
above 10 dB, both of the two methods have a perfect performance. However, with the SNR 
decreasing, the proposed MWC-IAA method has a much better performance than MWC-CTF. 

Conclusion 
A system of blind and sparsity level adaptive signal sub-Nyquist sampling and reconstruction for 

wideband time-varying signals is proposed to mitigate the limitations of high sampling rate, prior 
knowledge and low SNR. The proposed technique utilizes MWC sampling scheme that can sampling 
sparse multi-band signal at low rate, turns the problems of spectrum sensing and reconstruction into 
parameter estimation in array signal processing and solves them by iterative adaptive approach. The 
final simulation results indicate that the proposed method outperforms CTF framework in low SNR. 
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