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Abstract. Finite impulse response (FIR) filters implemented in binary weighted number system 
suffer from the carry propagation delay. To accelerate the FIR filtering process, a design method is 
proposed on the basis of residue number system (RNS), which has been considered as an important 
methodology of high-speed computation. The arithmetic operations are decomposed into a set of 
small modular operations, which can be performed by several sub-filters in parallel. At the end of 
filtering, the residue signals are converted to conventional binary notation via Chinese remainder 
theorem. The performance of the presented RNS FIR filter is evaluated by computer simulation. 
The results show that frequency specifications are satisfied and the time delay of arithmetic 
operations is substantially shortened. 

Introduction 
Finite impulse response (FIR) filters are one of the most common building blocks in digital 

signal processing (DSP) applications. Sometimes FIR filters are preferable to infinite impulse 
response (IIR) filters due to their useful attributes such as stable structures. Usually, to meet certain 
frequency specifications, the order of FIR filters is relatively high. The high order results in a great 
number of multiplications and additions, which limit the speed of FIR filtering [1]. 

The residue number system (RNS) is non-weighted number system, which has been recognized 
as an efficient methodology of high-speed signal processing for its inherent parallelism. In RNS, a 
large number is represented by a set of small residues. The arithmetic operations on large numbers 
can be done by performing operations on these small residues in parallel [2][3]. Since the arithmetic 
operations in different modular channels are independent of each other, there is no carry 
propagation among them. Therefore, the arithmetic operations are substantially accelerated. RNS is 
good at addition, subtraction, and multiplication, while some other operations, such as division and 
magnitude comparison, are difficult within RNS. The superiority of RNS in the design of 
high-speed FIR filters relies on the fact that only addition and multiplication are involved in the 
filtering [4]. 

A method of designing high-speed FIR filters based on RNS is proposed in this study. Firstly, 
conventional binary signal is decomposed into residue signals. Then the residue signals are 
processed by sub-filters in different modular channels. Finally, the outputs of the sub-filters are 
converted to traditional signal via Chinese remainder theorem (CRT) [5]. The performance of the 
proposed scheme is validated by computer simulation. 
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Background of Residue Number System 

An RNS is characterized by K-tuple moduli set { }1 2, , , KP p p p=  , in which pi’s (i=1, 2, ..., 
K) are co-prime positive integers. The dynamic range of RNS is defined as  
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Each integer 0 X M≤ <  can be uniquely represented as a residue set 1 2, , , KX x x x� 2 , where 

xi is the residue of X with respect to pi, which is noted by 
i

i p
x X= . 

As the coefficients of an FIR filter may be positive or negative, it is required to represent 
positive numbers as well as negative numbers in RNS. If a signed integer X satisfies one of two 
relations [6] 
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For two given operands [ ), 0,X Y M∈ , their arithmetic modular operation is performed as  

1 2
1 1 2 2, , ,

K
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X Y x y x y x y� � � � 2 �                                       (4) 

where � denotes addition, subtraction or multiplication. It is seen that the operation on large 
numbers can be done by several operations on smaller residues independently. Parallelism and small 
digit size explain why RNS is advantageous to the implementation of high-speed FIR filters. 

The Design of FIR Filters Using RNS 
An FIR filter is described by 
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where Xn is the input to the filter, Yn is the output, N is the filter’s order, and Aj denotes the 
coefficients. The structure of the RNS FIR filter is shown in Fig.1. The first step is to translate the 
conventional binary signal X into residue signals 1 2, , , Kx x x2 . And then the residue signals are 
processed by K sub-filters in parallel. Finally, the outputs of the sub-filters are combined to binary 
representation by reverse conversion. 
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Fig. 1.  Architecture of RNS filter             Fig. 2.  Structure of modulo pi sub-filter 
The sub-filter in modulo pi channel is described by 

829



 

, , ,
0

i

N

n i j i n j i
j p

y a x −
=

= ∑                  (6) 

where ,
i

j i j p
a A= , ,

i
n j i n j p

x X− −= , ,
i

n i n p
y Y= , and 1, 2, ,i K=  . Fig. 2 shows the structure 

of sub-filter modulo pi, where ⊕  and ⊗  denote modular addition and modular multiplication 
respectively, and z–1 stands for a unit delay. The building block of the sub-filter is a modular 
multiplicator followed by a modular adder [7]. 

Reverse conversion is the process of translating from residue representation to conventional 
binary notation. It is one of the difficult operations in RNS. The existing reverse conversion 
methods are classified into two categories. One is mixed radix conversion (MRC). The other is on 
the basis of CRT. The implementation of MRC is simpler, but the conversion speed is slower 
because of its serial mechanism. The operations of CRT are in parallel and higher conversion speed 
can be acquired [8]. Here we adopt CRT as the principle of the reverse conversion. The sub-filters’ 
residue outputs 1 2, , , Ky y y2  is converted to the common binary signal Y by 
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Moduli set selection is another issue that affects the performance of the DSP system. The form of 
moduli set directly impact on the complexity of arithmetic operations [9]. In our design, the moduli 
set { }2 1, 2 , 2 1m m m− +  is adopted for its advantages in the implementation of modular operations. 
Addition modulo 2m is just generic unsigned addition, and addition modulo 2m-1 is very similar to 
common 1s-complement addition. Addition modulo 2m+1 can be realized by the diminished-one 
representation. 

Performance Validation 
Let's take an example to illustrate the above scheme and then validate the performance of the 

filter by computer simulation. Consider 31st order bandpass FIR filter. The normalized passband 
frequency is [ ]0.3, 0.6 . Symmetrical coefficients are utilized to provide linear phase and simplify 
the design of arithmetic operators. A part of coefficients are listed in the second column of table 1. 
The moduli set is chosen as { }8 8 82 1, 2 , 2 1− + . So the dynamic range is  

( ) ( )8 8 8 242 1 2 2 1 2M = − × × + ≈               (8) 
Eq. 8 signifies that the resolution of the FIR filter is about 24 bits. The bit width of the coefficients 
and the input signal are allocated as 11 and 8 respectively. The coefficients are quantized to integers 
between –1023 and 1023. The integer and RNS representations of the coefficients are shown in 
table 1. The process of input signal is similar. 
 

Table 1  Filter coefficients 
 Decimal 

representation 
Integer 

representation 
RNS representation 

< aj,1, aj,2, aj,3 > 
A0=A31 -0.00277864786039 16776948 < 243, 244, 245 > 
A1=A30 -0.00016011315957 0 < 0, 0, 0 > 

... ... ... ... 
A14=A17 -0.14025833424407 16776321 < 126, 129, 132 > 
A15=A16 0.22432870996504 1023 < 3, 255, 252 > 
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    Fig. 3.  Amplitude response                Fig. 4.  PSD of input and output signal 
The amplitude response of the RNS FIR filter is compared with the same order ideal filter in 

Fig. 3. Here the ideal filter means that the coefficients are represented by high precision decimal 
numbers. Fig. 3 shows that the amplitude response of the RNS filter is almost the same as that of 
the ideal filter. The bandpass filters are driven by the input signals which consist of 50 Hz, 200 Hz, 
and 400 Hz sinusoidal waves. White Gaussian noise, whose signal-to-noise ratio is 10 dB, is added 
to the input signals. The power spectral density (PSD) of input and output signals is exhibited in Fig. 
4. It is demonstrated that the RNS filter effectively suppresses the signals out of the passband. 
However, the RNS filter's PSD performance is slightly inferior to the ideal filter due to its bit width 
limitation. 

Conclusion 
To implement high-speed FIR filters, a design method based on residue number system is 

proposed. The arithmetic operations in filtering are divided into a set of small operations, which are 
performed by several sub-filters in parallel. Therefore, the signal processing is accelerated 
substantially. The performance of the proposed scheme is validated by computer simulation.  
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