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Abstract. Geographic Information System (GIS) applications now increasingly make use of 
geo-located multimedia data such as images and videos. Furthermore, the widespread use of 
smartphones (and increasingly tablets) and the rapid improvement of hardware has enabled the 
acquisition of high-definition user-generated videos that are annotated with geo-properties. The 
sensor meta-data (e.g., GPS and digital compass values), which associate a continuous stream of 
location and viewing direction information with the collected videos, are considerably smaller in 
size than the visual content and are helpful in effectively and efficiently manage and search through 
large repositories of videos. In this paper, we proposed the Double-Bounding R-tree (DBR-tree), 
which utilizes the inner-bounding rectangle and outer bounding rectangle to manage the camera’s 
field of view. Experimental results show that this structure can prune the unnecessary overlap 
calculation and improve the spatial query performance. 

Introduction 
Recent developments in video recording technology have enabled user-generated video (UGV) 

production on a daily basis. For example, smartphones (and increasingly tablets), which are carried 
by users all the time, have become extremely popular for capturing and sharing online videos due to 
their convenience, enhanced quality of images and wireless connectivity. The multimedia 
community nowadays has increasing interest in GIS applications, e.g., Flickr and Panoramio allow 
users to upload images and videos with attached geo-locations of the cameras. Furthermore, 
embedded sensors (e.g., GPS and compass units) have been cost-efficiently deployed on mobile 
devices. Consequently, some very useful meta-data of videos, especially geographical properties of 
video scenes, can easily be collected during video capturing. This association of video scenes and 
their geographic meta-data has led to interesting research topics in the multimedia community. For 
instance, the recorded sensor meta-data can be utilized to aid in modeling, indexing and searching 
of geo-tagged videos at the high semantic level preferred by humans. 

Current video search techniques that annotate videos based on the visual content are struggling 
to achieve satisfactory results in online user-generated videos (UGVs), particularly in accuracy and 
scalability. In this work, we utilized the camera's Field-of-View (FOV for short) to convert the 
visual content into a series of spatial objects. Compared to visual content, the meta-data occupies 
much less space, which makes searching among large scale of videos practical. To improve the 
performance of our approach, a meta-data indexing algorithm is presented. Experimental results 
show that the proposed methodology outperforms well in both effectiveness and efficiency. 
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Related Work and Preliminaries 
The camera viewable scene is what a camera in geo-space captures. This region is referred to as 

camera field-of-view (FOV in short) with the shape of a pie-slice shape [1]. As shown in Fig. 1, the 
FOV coverage in 2D space can be defined with four parameters: the camera location P, the camera 
viewing direction vector  , the viewable angle α, and the maximum visible distance RV. The 
camera location P is the ⟨latitude, longitude⟩ coordinate read from a positioning device (e.g., GPS 
and/or Cricket coordinates [2]). The viewing direction vector  can be acquired from a digital 
compass. The camera’s viewable angle α is calculated based on the lens properties for the current 
zoom level [3]. The visible distance RV is the maximum distance at which a large object within the 
camera’s FOV can be recognized. Thus, the camera viewable scene at time t is denoted by the tuple 
FOV (P⟨lat, lng⟩,  , α, RV, t). The tuple values are acquired from embedded sensors during video 
recording. 

Associating geographic (e.g., location and orientation) information with a camera’s video data 
for retrieval purposes has become an active research area [4, 5]. Authors [1, 6] proposed a model to 
represent a camera viewable scene with a shape of a pie-slice, based on the GPS and digital 
compass data as well as the visible distance. Ma et al. [7, 8] proposed a grid-based index structure to 
speed up the searching process when dealing with directional or radius queries. They also use R-tree 
to index geo-referenced video with a two-level structure, i.e., the first level is a basic R-tree 
structure while the second level is a probability map attached to each leaf node of the R-tree.  

 
 

Fig. 1. Illustration of the field-of-view (FOV) model in 2D space. 
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Fig. 2. Illustration of the inner and outer bounding rectangle of the DBR-tree. 
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Design of the Double-Bounding R-tree 
The R-tree (including R-tree [9], R+-tree [10], R*-tree [11] and their variations) is the most 

widely used multidimensional spatial data indexing structure. To reduce the calculation complexity, 
R-tree family uses minimum bounding rectangle (MBR for short) to partition the metric space. 
When dealing with the camera’s maximum viewing distance, this large number always makes the 
searching regions locating within the FOV. To avoid unnecessary searching, we design the 
DBR-tree and the structure of the DBR-tree is shown in Fig. 2. Fig. 2(a) shows a general case of the 
inner and outer bounding rectangle. Fig. 2(b) and 2(c) show two special cases respectively. The 
outer bounding rectangle is with the same idea as typical R-tree, which the inner bounding rectangle 
is connected either on the line or inside the FOV. In this case, a two phase pruning algorithm is used: 
FOVs with the inner rectangle overlapping with the query region can be directly treated as queried 
results, while those with the outer rectangle not overlapping with the query region can be pruned at 
the first step. This means: if the query region overlaps with the inner bounding rectangle, the FOV 
can definitely capture the query region; if the query region does not overlap with the outer bounding 
rectangle, the FOV cannot capture the query region. Only the rest FOVs need calculating overlap 
with a refinement step. The refinement step is calculated according to the real overlap region. 
Experimental results 

We performed our experiments on one large synthetic dataset. Due to the difficulties of 
collecting a large set of real-world videos, a synthetic dataset of moving cameras with positions 
inside a 75 km × 75 km region is used to test the performance with large-scale of data. We 
generated camera trajectories using the Georeferenced Synthetic Meta-data Generator [12]. The 
produced synthetic meta-data exhibits equivalent characteristics to real-world data. We selected 100 
randomly distributed center points within the test area and generated 5, 500 moving cameras with 
trajectories near these center points. Each camera was traced for 1, 000 seconds, with a sampling 
rate of 1 per second for the GPS and compass. Thus, the resulting dataset contained about 5.4 
million FOVs. To simulate a real-world case, we set the maximum speed of the moving cameras to 
60 km/h, with an average speed of 20 km/h. We also set the maximum camera rotation limit to 30◦ 
per second, which ensures that the camera rotates smoothly and does not jump from one direction to 
another, emulating real user behavior. The experiments were then conducted on a server with two 
quad core IntelR ⃝ XeonR ⃝ X5450 3.0 GHz CPUs and 32 GB memory running Linux 2.6.18. We then 
generated 10, 000 range queries of 500 m * 500 m rectangles within the 75 km × 75 km test region 
and counted the cumulative processing time. Fig. 3 shows the comparison between the typical 
R-tree and the DBR-tree. Overall, the DBR-tree can achieve around 30% speed up than typical 
R-tree. As the dataset size grows, the processing time of both structures increases, but increasing 
rate of DBR-tree is smaller than that of typical R-tree.  

 
Fig 3. Comparison of processing time between typical R-tree and DBR-tree. 
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Conclusion 
In this manuscript, we investigated the problem of indexing the FOV using sensor meta-data. 

The DBR-tree is designed with both inner bounding rectangle and outer bounding rectangle. Both 
the inner and outer rectangle can prune the unnecessary computation. Experimental results show 
that the DBR-tree can achieve around 30% improvement in processing time compared to typical 
R-tree.  
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