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Abstract. This paper presents a class of adaptive ant colony optimization algorithm and proves its 
convergence properties. The global searching and convergence ability are improved by adaptively 
changing the pheromone trails evaporation factors and decreasing lower pheromone bound. Markov 
process analysis is used to prove convergence properties of the algorithms. It is shown that its current 
solutions of the system converge, with probability one, to an optimal solution of the system. 

Introduction 
Ant Colony Optimization (ACO) is a class of constructive metaheuristic algorithms that take 
inspiration from the foraging behavior of real ant colonies [1]. These algorithms have achieved 
widespread success in solving many different NP-hard combinatorial optimization problems [2, 3]. 
Still, very little theory is available to explain the reasons underlying ACO's success. Meuleau and 
Dorigo [4] have shown that ACO algorithms and stochastic gradient descent are strongly related and 
that a particular form of ACO algorithms converges with probability one to a local optimum. Stützle 
and Dorigo [5] analyze the MAX-MIN Ant System and show that the algorithm finds at least once an 
optimal solution with arbitrarily large probability if run long enough. Closely related to the work 
presented in this paper is Gutjahr’s convergence proof [6]. He proved the current solution of a 
particular ant colony optimization algorithm converges, with a probability that can be made with 
arbitrarily close to one, to the globally optimal solution. But this limitation has been removed, Gutjahr 
generalizes the previous result such that the range of application of the convergence result is extended 
considerably [7]. In another paper [8], Gutjahr analyzes two ACO algorithmic variants which use 
elitist pheromone update mechanisms and demonstrates that its current solutions converge to an 
optimal solution with probability exactly one.  

From the above analysis, we obtain that algorithmic convergence greatly relies on the change 
tendency of pheromone trail values. This change can be controlled by pheromone evaporation factor. 
Moreover, the well-known convergence property of the Simulate Annealing gives us greatly 
enlightenment. It turns out that a convergence guarantee can be obtained by a suitable speed of 
“cooling”. 

The aim of the present article is to show the theoretical soundness of the ant-based optimization 
approach. We present a class of adaptive ACO algorithm based on lower pheromone bound, whose 
evaporation factor and lower pheromone bound are time-dependent. We show that for this particular 
adaptive ACO algorithm, its current solutions converge, with probability exactly one, to an optimal 
solution. 

The Algorithm 
As it is done in [6], our extension of ACO is also based on a directed graph. 

Definition 1. Let an instance of a combinatorial optimization problem be given. By a construction 
graph for this instance, we understand a directed graph C=(V, A) together with a functionΦ with the 
following properties:  
(1) In C, a unique node is marked as the start node. 
(2) Let W be the set of (directed) walks w in C satisfying the following conditions: 

(i) w starts at the start node of C. 
(ii) w contains each node of C at most once. 
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(iii) The last node on w has no successor node in C that is not already contained in w.  
Then Φ  maps a subset W  of the set W onto the set of feasible solutions of the given problem 
instance. In other words, to each walk w inW , there corresponds (viaΦ ) a feasible solution, and 
to each feasible solution, there corresponds (via 1−Φ ) at least one walk inW .  

Based on Definition 1, the algorithm is the following: 
Step 1   Initialize 

( , )k l" , set ( , ) 1/ | |k l At = , where |A| is the number of  arcs of C; set k, the current position of the ant, 
equal to the start node of C; set u, the current path of the ant, equal to the empty list. 
Step 2   Solution Construction 

while (a feasible continuation (k, l) of the path 0( ,u u=  2 1..., , )t tu u k− − = of the ant exists) do: 
select successor node l with transition probability  
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            (1) 
continue the current path u of the ant to node l by adding arc (k, l) and setting k := l. 

Step 3   Pheromone Trail Update 
if ˆ( , ) ( )k l w n∈ ,then min1 1 ˆ( ) max(( ) ( ) / ( ( )), ( )),n nkl kln n L w n nt ρ t ρ t+ − +=   otherwise,  

min( 1) max((1 ) ( ), ( ))kl n kln n nt ρ t t+ = − .  Where, (0 1 )n nρ ρ< < and β  are parameters. ( )kl nt is pheromone 
values, and ( )kl uh is desirability values. ˆ ( )w n is the best path found until the end of iteration n. L(w) is 
the number of arcs of path w.  

Remark: Because there are only finitely many arcs (k, l) and only finitely many feasible partial 
walks u, we set  

*min{[ ( )] | ( , ) } 0kl u k l wβγ h= ∈∈ > , and max[ ( )]kl u βhΓ = < ∞ . where *w is an optimal walk. Multiplying all 
desirability values ( )kl uh  by a fixed constant does not change the transition probabilities. So it can be 
assumed that the values ( )kl uh are normalized in such a way that Γ  = 1, that is, [ ( )] 1kl u βh <  for all arcs 
(k, l). 

The essential feature of this algorithm is that the evaporation factor nρ  and lower Pheromone 
bound min ( )nt  are chosen as time-dependent.. 

Convergence 
Before proving the theorem, we introduce three lemmas used in theorem. 
Lemma 1. The state variables nX = ( ( )nt , ˆ ( 1)w n − ) (n=1,2,…) form a Markov process, where ( )nt is the vector 

of pheromone values ( )kl nt  for all arcs (k, l) at the beginning of iteration n and ˆ ( 1)w n −  is the best path found at the 
end  of iteration n-1. 
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ˆ ( 1)w n − ) of the Markov process converge as n →∞  to one of the state * *( [ ], )w wt  where *w  is an optimal path, and
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 In particular, there exists with probability one an optimal path 

*w  such that for a fixed ant s, its probability * ( )
w

p n  of traversing path *w  in iteration n tends to one, as n →∞ . 
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Proof: (1) By nF , we denote the event that iteration n is the first iteration in which an optimal path is traversed by some 
ants. Consider a fixed optimal path *w .We have *

1 2F F w¬ ∧¬ ∧ ⇒2 is never traversed, and hence  

1 2( ...)P F F¬ ∧¬ ∧ *(P w≤ is never traversed) *

1

(
n
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The maximum possible amount of pheromone added to any arc (k, l) after any iteration is *( )n L wρ . Hence, due to 

minlim ( ) 0
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= , the pheromone trail at sufficiently large iteration n is bounded by 
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According to lemma 2 and lemma 3, this sum converges to max *

1
( )L w

t = . Hence, there exits 2N , for all n> 2N and all

( , )k l A∈ , such that ( ) 1kl nt < . Let | |V  denotes the maximal numbers of feasible successors of a fixed node. It follows 

that for 1 2max( , )n N N N≥ = and *( , )k l w∈ , 
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where 1 2
cc

V
γ

= . Hence, the probability of a fixed ant s to traverse *w  in iteration n is  
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Obviously, this lower bound is independent of what has happened before iteration n, such that the estimation also holds 
conditionally on arbitrary events in iteration 1,…,n-1. Therefore, an upper bound on the right side of (2) is  
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*( )

1log 1
log( 1)

L w

n N

c
n

∞

=

   −   +  
∑

*( )
1

log( 1)

L w

n N

c
n

∞

=

 
≤ − = −∞ + 
∑ ,                                                                              (7) 

since (log ) L
n

n −∑  is a diverging series for each positive integer L. As a consequence, the product (6) and also the 
right side of (2) is zero. Therefore, we obtain 1 2( ) 1P F F∨ ∨ =2 , which proves that the event 1 2F F∨ ∨2 that in some 
iteration an optimal path is traversed has probability one. 

After the iteration where an optimal path has been traversed for the first time, ˆ ( )w n  is set equal to this path. Hence, 
with probability one, the Markov process nX = ( ( )nt , ˆ ( 1)w n − ) enters in some iteration into one of the sets | | *R { }A w× , 
where *w is an optimal path. 

(2) We now show that for each *w  taken from the set of optimal paths, if the Markov process satisfies 
| | *( ) R { }A

nX w w∈ ×  for some n, then  * *lim ( [ ], )nn
X w wt

→∞
= .              

Let m denotes the index of the iteration where *w is traversed for the first time, such that the process 
| | *( ) R { }A

nX w w∈ ×  in iteration m+1. Then, in all iterations n>m, only *w is reinforced, and *ˆ ( )w n w= .By neglecting the 

possibility of min ( )nt , it can be easily verified that for *( , )k l w∈ and r=1,2,…, due to lemma 2 and lemma 3 
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As a consequence, ( ) 1/(2 )kl m r Lt + >  for sufficiently large r.  On the other hand,  since min ( ) 0( )n nt → →∞ , we 

have min ( ) 1/(2 )m r Lt + <  for sufficiently large r. Hence, for *( , )k l w∈ , it holds that ( ) 1/lim klr
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+ = .  
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(3) From the above discussion, we know that in some iteration n, with probability one, the Markov process  
( )nX w | | *R { }A w∈ × . It follows immediately from the limits of the pheromone trails and the transition probability that for
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Conclusion 
It is well known that using constant evaporation factor in pheromone update of the general ant colony 
algorithm can easily get pheromone value on not reinforced arcs decrease too fast and lead to 
premature convergence to suboptimal solution. On the other hand, introducing a fixed lower 
pheromone bound leads to random-search-like behaviour without convergence. As in Simulated 
Annealing [9], convergence can be obtained by a suitable speed of “cooling” (i.e., reduction of the 
influence of randomness). Therefore, a compromise method is applied to allow pheromone trails on 
not reinforced arcs to tend to zero, but slower than constantly. This can be achieved by decreasing 
evaporation factors and “slowly” lower pheromone bounds. 

In this paper, we are not able to give clue to choose the parameter schemes in Theorem to speed up 
convergence in a best-possible way. It is only presented that if the given conditions are satisfied, the 
algorithm keeps a suitable balance between the two contradicting aims of exploring the search space 
and favouring good solution. We could specially emphasize either the first or the second aim, but it is 
very difficult to determine the optimal point of this range in a theoretical analysis. Meanwhile, we do 
not affirm that the theoretical convergent speeds indicated by theorem are also the most efficient ones. 
We only present the convergent conditions of this type ant colony algorithm and get convergence to 
the optimal solution with probability one. 
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