4th International Conference on Computer, Mechatronics, Control and Electronic Engineering (ICCMCEE 2015)

Code Level Context Sensitivity Exploration Algorithm

Yan Lijing'22a , Shan Zheng'2p |, Xu Xiaoyan'! , Xue Fei’

'The State Key Laboratory of Mathematical Engineering and Advanced Computing, Zhengzhou
450002, China

2 Information Engineering University, Zhengzhou 450002, China
%ing894019143@163.com, *zzzhengming@163.com

Keywords: Behavior model; Function call graph; Context sensitivity; Source code level,
Inter-procedure analysis

Abstract. The context sensitivity is an important property in program analysis which can improve
the analysis accuracy of the function call context of the source codes and helps to improve the
abilities of the compiler optimization and verification procedures. The automata model based on the
function call of the program source code is an effective method of modeling the behaviors of the
current software, but this method does not consider the context sensitivity of the software function
calls. To solve this problem, on the base of high-performance open source compiler Open64, we
achieve a source code level context sensitivity exploration algorithm to analyze the relationships
between the points of the function calls. Using the iterator, by the circulating way, the algorithm
traverses the calling relationships between functions and obtains the context sensitive information
analysis results. With this method, it can guide the source code modeling of using the single context
sensitivity or the mixed context sensitivity models. In the benchmark sets SPEC2006 and NPB3.3.1,
we verify the correctness of the algorithm, and the results show that the proposed algorithm can
detect the context sensitivity of the source code level, and the hybrid context sensitivity modeling
approach which we used, comparing with other modeling methods, has had a higher accuracy.

1. Introduction

Software behavior modeling main purpose is to get the statusinformation of the softwares, so as
to analyze the behavior of the software. In order to efficiently obtain the state information of
software, we need to design a reasonable modeling method.The researchers have proposed many
methods of modeling software behavior: the short sequence model based on system calls, the
automaton model, the data flow model and so on. Among them, the automata model gets the
function calls' relationships within the range of all functions, typically models include the
non-deterministic finite state automata (NFA), pushdown automata (PDA) and Dyck model [1]and
so on. These modeling methods are related to the context sensitive models.

However, using a automata to model the behavior does not take into account software's context
sensitivity. If the called program context sensitivity does not exist, utilizing context sensitive
automaton model will bring redundant computation overhead. If the program exists the called
context sensitivities in many places, using context insensitive analysis method, existing the
impossible path problems,it will lead to the software attacked at runtime. In order to ensure the
model calculation precision and improve the scalability, it is necessary in front of the source code
modeling to analyze in the program function context sensitivity.

Based on software behavior modeling for application requirements, we put forward a software
source code context sensitive detection algorithm before softwaer behavior modeling. The
algorithm is mainly aimed at the statistical information of the function invocation context sensitivity.
According to the acquired context sensitive information to guide behavior modeling
software:(1)The source code which is function context insensitive can build FSA model;(2)Context
sensitive call points in the source code can build software model using PDA, Dyck
model;(3)Functions in the source code contain both the context sensitive and insensitive call points
program, can take the combination of FSA with PDA modeling software in the form of behavior.

© 2015. The authors - Published by Atlantis Press 1014

2. Related research

In recent years, Scholars put forward a series of behavior models associated with program
context analysis. Context insensitive software behavior models include finite state automaton[1],
abstract stack model[2] and the call graph model[3],and so on.Finite state automata (FSA) to
establish behavior models by statically analyzing software source codes, does not extract system
call context information. Abstract stack based on the static control flow analysis of program source
code, builds call graph model first, and then obtains the abstract stack model through the call graph
model,is essentially a context insensitive non-deterministic FSA. And call graph model with the
function calls actually is an NFA, also does not have the context sensitivity.

Context sensitive software behavior models mainly include traversing the call stack,the call
context tree, Dyck model and the HFA model, etc.Call stack [4] as the most convenient way to get
the context information, which uses a virtual stack structure as the research object.Spivey[5]
proposed dynamically creating a call context tree, by monitoring the procedure's position in the
calling context tree to make credible evaluation. A probabilistic model of the calling context
proposed by Bond et al[6]had a higher efficiency than calling context tree.Dyck model[7]can delete
redundant invalid calls and sub-paths without system calls by using the method of dynamic
compression, is concerned the application context sensitivity of binary code; HFA[S8] is essentially a
DPDA model, not only can obtain better precision, but also is a context sensitive model.

These studies in front of the software model didn't consider the context sensitivity analysis as an
important role on the accuracy and efficiency of the improvement process. Context sensitive
detection algorithm by analyzing the relationships between the call points context sensitivity, will
be more beneficial to choose the right model for behavioral model.

3. Interprocedural analysis

The realization of the source code level context sensitivity exploration algorithm mainly depends
on Open64 compiler [9] generated function call graph.This paper mainly elaborate from Open64
compiler analysis framework,extended function call graph and call graph generation and traverse.
Function call graph generated during the interprocedural analysis,the framework is shown in figure
1.

IR Soure code

Very High
WHIRL

Front End(FE)

Pre-Optimizer
(PreOPT)

Inter-Procedural
i | Local Analysis (IPL) | !
Inter-Procedural
Analyzer (IPA)

Inter-Procedural
: Optimizer (IPO) 3

Inter-Procedural
Analysis

High WHIRL!

Loop Nest
Optimizer(LNO)

Mid Main Optimizer
WHIRL (WOPT)

Low

Code Generator
WHIRL (CG)

Fig.1 Open64 Inter-procedure analysis frame

3.1 Interprocedural call graph generating formalization description

Function call graph generation mainly depends on the source code, in this paper, the
formalization description of function call graph generation process: Setting the input source

Ssourcecode , the call graph generation rely on interprocedural analysis[10](expressed as ¥),mainly

include: interprocedural local analysis, interprocedural analysis, interprocedural optimization. The
latter analysis among the three analysis processes depend on the result of the former analysis,we set

1015

up the three analysis processes for the Sipr,Sipa,Sipo.Through the above analysis processes,we

obtain the source code for the function call graph, set to Scatgen » having the following formula:
S Ssourcecodel//(SIPL - SIPA - SIPO) (1)

Among them, the process of local analysis (Sipr) main function is to collect all the summary
information, we put these aggregate information generically indicated as ithen Sipp can be
expressed as:

S, = ii
“ 2)

In the above formula, n represents the total number of required summary information.

Interprocedural analysis (Sipa) is establishing the call graph using the summary of information
obtained.during the Sppr. including interprocedural constant propagation, inline replacement and
alias analysis and other analysis methods. There are no absolute relationships between these
methods. The relationships between the analysis methods are represented as |. Set these analysis
methods respectively, M, G, P..., Sipa can be expressed as:

SIPA = M (SIPL) | G(SIPL) | P(SIPL)"' (3)

Interprocedural optimization (Sipo) mainly based on the results of Sipa, obtains intermediate
representation of the source code, converts into a function call graph. We set up the transformation

callgraph =

process is Change the Sipo can be expressed as:
S, = Change(S,,) 4)

Through the above formalization, formula (1) can be described as:

S s = S (Change(M Q16N PO
S 5)

3.2 extended function call graph analysis

Program call graph[11] is used to indicate program interprocedural call relationships. Every call
point usually needs to be represented by one single node in the figure. In this case, the call graph is
actually a multi-figure.The accuracy of the call graph is a direct impact on the accuracy of the
function call context sensitivity analysis. Extended call graph is an improvement on the traditional
call graph. Each node in the figure represents a function. Extended call graph compared with the
traditional call graph extends some additional information. For the same function is called with
multiple points, extended call graph will put this function for multiple nodes.In a traditional call
graph, different call points point to the same node. In figure 2 as an example of traditional call
graph comparison with the extended call graph, Open64 generates extended call graph during the
interprocedural analysis by adding redundant nodes.

Caller Caller
B B

Tw (b)
Fig.2 A extended call graph is an unfolded version of a traditional graph,(a) in a traditional
function, the call graph nodes sharing the function call,(b) in an extended call graph, the function
nodes having multiple function calls.

3.3 Call graph traversal

By checking the program each function body, Open64 add a side from the function call to the
called function for each function call site. In such way to traverse the entire program source code,

1016

we get the call and the called relationships between all of the functions, generating the function call
graph G = (N, E) of node and edge information, where N represents the function in the program, E
represents the function call relationship [12].
Table 1 Call graph traversal sequence in Open64

structure traversal sequence | specific order
PREORDER preorder traversal | center, right ,left
POSTORDER postorder traversal | right, left,center
LEVELORDER | level traversal lT;t)%) level to low level, each layer from right to
DONTCARE postorder traversal | left ,right, center

Table 1 describes the different traversal methods of relevant information.Because of the function
call graph traversal has no effect on the validity of the context-sensitive detection algorithm, we
choose the preorder traversal as the access of each node of function call graph.

4. Context sensitivity exploration algorithm

Source level context sensitivity detection algorithm is proposed in this paper, mainly traverses the
acquired function call graph, to sort out the relationships between each call and called function
nodes and gets the context sensitive information CONTEXT SENSITIVE INFO and the call
information CALL INFO. With statistical information, it is convenient to accurate software
behavior model.structure description as shown in figure 3:

typeof struct{

int deep;

inttotal _ callsite _ num;
intinsen _ callsite _num;
floatinsen _ rate;

intinsen _callee num;

float ave _insen _callsite num;
intinsen _max_ deep;

typeof struct{

int callsite _ deep;
char callsite _ name[];
int callee deep;
char callee name[];
}CALL_INFO

}CONTEXT_SENSITIVE_INFO

Fig.3 The structures of CONTEXT SENSITIVE INFO and CALL INFO

Figure 4 is the context sensitive detection algorithm pseudo code, this algorithm analyses
sensitivity of the extended function call graph obtained by preorder traversal. L1-L5 is the
initialization section. First, we initialize the node iterator, generate context_sensitivity_info to store
sensitive information and callee_info to store relationship of the function call points. We set the
maximum call point number MAX_CALLSITE to ensure maximum application space, prevent
statistical information overflow. Algorithm process is described as follows:

(1) L6 is a loop structure, node iterator cg_iter traversal each node of the interprocedural call
graph.

(2) L8, L9 is aimed at the current traverse node, using the function Get_Sorted_Callsite_List to
obtain a list of the current nodes including the first level call points. The list saves the next level of
information of the current node.

(3) L10 will traverse the current node and the next node level call edges and save to
IPA_EDGE_INDEX structure. This call edge structure stores the directed call edges, distincts node
call relations, at the same time, initializes directed edge iterator ipa_edge_iter.

(4) L12 through edge iterator ipa_edge_iter traverses the context information of the node and the
call point, outputs the relationships of nodes which are called and the next level of nodes. Through
the iterative operation, the algorithm completes the context sensitive analysis of all nodes.

(5) L13 to 15 on the iterator ipa_edge_iter iterative operation, update the context sensitive
information CONTEXT_SENSITIVE_INFO and the CALL_INFO.

(6) L18, L19,after node iterator cg_iter and edge iterator ipa_edge_iter traversals are completed,
the algorithm calculates the insensitive call point number information, insensitive probability,
average context insensitive call points number and other information.

1017

procedure Context Sensitivity Analysis(File * fp, TRAVERSAL_ORDER order = PREORDER)
(1) TIPA_NODE_ITER cg_iter = Initial_IPA_Node_iter(IPA_CALL_GRAPH,order);

(2) CONTEXT_SENSITIVITY_INFO context_sensitivity_info;

(3) CALLEE_INFO callee_infof MAX_CALLSITES];

(4) Initial_context_sensitivity_info(context_sensitivity_info);

(5) intcallee_func_num = Stat_Callee_func_Num(cg_iter);

(6) foreachcg_iter do

) IPA_NODE * node = cg _ iter.Current();

®) vector<IPA_EDGE_INDEX> callsite_list;

) callsite_list = Get_Sorted_Callsite_List(node, IPA_CALL_GRAPH);

(10) vector<IPA_EDGE_INDEX> ipa_edge_iter = Initial_IPA_Edge_iter (callsite_list);

(12) for eachipa_edge_iter do

(13) context_sensitivity_info.totol_call_site_num-++;

(14) Accumulate_Callee_Info(callee_info);

(15) context_sensitive_info.insen_max_deep=Calculate_Insen_Max_Deep(callee_info, IPA_CALL_GRAPH);
(16) endfor

(17) endfor

(18) Calculate Insen Callee Info(context_sensitivity_info,callee_info);

(19) Calculate _Other _ Probability _ Info(context_sensitivity_info);

(20) Fprint_Vobose(fp,context_sensitivity_info);

end;

Fig.4 Source code level context sensitivity exploration algorithm

5 Experiment and Analysis

The algorithm framework is based on Open64 5.0,adding the call relationship analysis for the
entended function call graph.Experimental platform for the IBM 3850 server, frequency 2.0 GHz
processor, 2 gb memory, L1 data cache to 32 KB, L2 cache is 256 KB, basic page for 8§ KB. The
operating system kernel for Linux 2.6.18, version for Redhat Enterprise AS 5.0.

5.1 correction validation

First, the experiment tests the ordinary procedures where the main program contains function
call relations, mainly verify condition, loop, recursive three control structures in the program.
Results are as follows:

(1) For the general order of execution of the program, the algorithm has a better ability to
determine the function call context sensitive information.

(2) In the case of branch or loop statement contained in the main function or sub-function, as
shown in Figure 5. Function call point sensitivity relationship outputs the call depth 3 of the for
loop. Branch statements and sequence statements get the same context sensitive information.

Fig.5 Insensitive function calls in the branch and loop structure
(3) Recursive function is a function call site calls itself in the implementation process. Whether
it's called directly or using recursive functions in a conditional structure, the sensitivity of the depth
is 2.
All of above,the algorithm can correctly acquire function call point context sensitive
information.

1018

5.2 Effectiveness Test

Effectiveness experiment uses the C program in Spec2006 and NPB3.3.1 as experimental

samples. Test results as shown in figure 6 and 7:

700 20 - - - -
=3 call po_ir_\t_ . E%1 Call point deep
E Insensitivity call point B Insensitivity call point deep

500 _. '
400
300
200}~

100

4
251
0 e .

wod T o val ae0 41 Al
L o ‘.‘mua“‘ §10d 13 enc? Lt qnnde®
) !

i W at joes o Al
! - ‘wuan\ A10! R ben‘“?‘ N (on9ee
a6 &

Fig.6 context insensitive call point statistics Fig7 The maximum insensitive call point depth

From Fig.6,the context insensitive call points proportion is higher. In the process of establishment
of behavior model, you need to consider context sensitive modeling methods such as PDA model,
HFA model, Dyck model, abstract stack model combined with FSA model and other methods, will
be able to more accurately describe the behavior of the software model.

From Fig.7,results in addition to 473.astar and mediabench2_video in the maximum insensitive
depth is less than the maximum depth of the function call graph, the others has a same maximum
depth of function call point. The main reason is some points in a function call after the non-leaf
node is called, and has been called in the leaf node, will have an impact to the maximum insensitive
depth.

5.3 Comparison of procedure modeling methods

For the validity test subjects C language program in Spec2006 and NPB3.3.1, We are modeling
the source code level of behavior. This paper adopts the method of combining FSA with PDA for
the source code of behavior mode, comparing the accuracy of this model with the single using the
FSA model, Dyck model or abstract stack to model. The results as shown in table 2:

Table 2 software modeling method comparison in Spec2006 and NPB3.3.1

experimental FSA+PDA FSA Dyck abstract
subject hybrid model model model | stack model
444 namd 98.3% 73.9% 89.3% 85.3%
462.libquantum 97.4% 75.5% 88.7% 83.7%
470.1bm 98.1% 70.7% 85.1% 81.6%
473.astar 97.3% 72.5% 86.9% 84.9%
mediabench2 video 89.7% 90.8% 88.5% 86.4%
tmn-1.7 93.6% 87.8% 87.9% 85.8%
tmndec-1.7 96.7% 80.9% 90.3% 85.7%

As seen from the table 2, the FSA and PDA mix-context sensitive model’s accuracy is higher.
This shows that the context sensitive detection algorithm can guide the software behavior modeling
a more accurate model.

6 The conclusion

In this paper, we propose a source code level context sensitivity exploration algorithm, can
accurately analyze the function call points’ context sensitive information. Through the basis
function calls tests, the sensitivity of detection of the larger source code function call points in
Spec2006 for and NPB3.3.1, we can prove that the algorithm can obtain correct and effective

1019

function sensitive information. The comparison of modeling methods shows: the method of FSA
and PDA hybrid model has a higher than accuracy other modeling methods. The next step of work:

(1) The algorithm utility platform for further expansion, in addition Open64 other compilers
can also be integrated the sensitivity detection.

(2) We will further expand the application scope of the proposed algorithm, to use it to detect
the context sensitivity of executable code, assembly code, etc.

(3) We can expand the function call relationship of the context sensitive information to more
diverse software behavior modeling, to improve the accuracy and efficiency of software analysis.

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China
(No.61472447), the National = High Technology @ Research and Development
Plan(863)(2009AA012201).

References

[1] Fen Tao, Zhiyi Yin, Jianming Fu.Software behavior model based on system calls.[J].Computer
Science, 2010, 04:151.

[2] Wagner D, Dean D. Intrusion detection via static analysis[C]//Security and Privacy, 2001. S&P
2001. Proceedings. 2001 IEEE Symposium on. IEEE, 2001: 156-168.

[3] Xing Liu.The Homologous Analysis of Malware Based on function-call Graph[D].National
University of Defense Technology, 2012.

[4] Feng H H, Kolesnikov O M, Fogla P, et al. Anomaly detection using call stack
information[C]//Security and Privacy, 2003. Proceedings. 2003 Symposium on. IEEE, 2003:
62.

[5] Zhen Li, Junfeng Tian, Xiaohui Yang.Program behavior monitoring based on system call
attributes[J].Journal of Computer Research and Development,2012,08:1676-1684.

[6] Bond M D, McKinley K S. Probabilistic calling context[C]//ACM SIGPLAN Notices. ACM,
2007, 42(10): 97-112.

[7] Giffin J T, Jha S, Miller B P. Efficient Context-Sensitive Intrusion Detection[C]//NDSS. 2004.

[8] Wen Li, Yingxia Dai, Yifeng Lian,et al. Context sensitive host-based IDS using hybrid
automaton[J].Journal of Software,2009,01:138-151.

[9] Tianwei Sheng, Wengguang Chen, Weimin Zheng. A context-sensitive pointer analysis phase in
Open64 Compiler[C].//2nd Annual Workshop on Open64 in Conjunction with IEEE/ACM
International Symposium on Code Generation and Optimization(CGO).2009.

[I0]Reandy Allen,Ken Kennedy.Optimizing Compilers for Modern Architectures,A
Dependence-Based Approach[M].USA:Elsevier Science,2001.

[11] L.F.C.C.Mallens.A framework for data-acceress strategies in GPGPU programs[D].Technische
Universiteit Eindhoven,2013.

[12]Alfred V.Aho,Monica S.Lam,Ravi Sethi,et al. Compilers:Principles,Techniques and Tools
(Second Edition)[M]. Bejing:China Machine Press,2009.

1020

