

Code Level Context Sensitivity Exploration Algorithm

Yan Lijing1,2,a，Shan Zheng1,2,b，Xu Xiaoyan1，Xue Fei1
1The State Key Laboratory of Mathematical Engineering and Advanced Computing, Zhengzhou

450002, China
2 Information Engineering University, Zhengzhou 450002, China

ajing894019143@163.com, bzzzhengming@163.com

Keywords: Behavior model; Function call graph; Context sensitivity; Source code level;
Inter-procedure analysis

Abstract. The context sensitivity is an important property in program analysis which can improve
the analysis accuracy of the function call context of the source codes and helps to improve the
abilities of the compiler optimization and verification procedures. The automata model based on the
function call of the program source code is an effective method of modeling the behaviors of the
current software, but this method does not consider the context sensitivity of the software function
calls. To solve this problem, on the base of high-performance open source compiler Open64, we
achieve a source code level context sensitivity exploration algorithm to analyze the relationships
between the points of the function calls. Using the iterator, by the circulating way, the algorithm
traverses the calling relationships between functions and obtains the context sensitive information
analysis results. With this method, it can guide the source code modeling of using the single context
sensitivity or the mixed context sensitivity models. In the benchmark sets SPEC2006 and NPB3.3.1,
we verify the correctness of the algorithm, and the results show that the proposed algorithm can
detect the context sensitivity of the source code level, and the hybrid context sensitivity modeling
approach which we used, comparing with other modeling methods, has had a higher accuracy.

1. Introduction

Software behavior modeling main purpose is to get the statusinformation of the softwares, so as
to analyze the behavior of the software. In order to efficiently obtain the state information of
software, we need to design a reasonable modeling method.The researchers have proposed many
methods of modeling software behavior: the short sequence model based on system calls, the
automaton model, the data flow model and so on. Among them, the automata model gets the
function calls' relationships within the range of all functions, typically models include the
non-deterministic finite state automata (NFA), pushdown automata (PDA) and Dyck model [1]and
so on. These modeling methods are related to the context sensitive models.

However, using a automata to model the behavior does not take into account software's context
sensitivity. If the called program context sensitivity does not exist, utilizing context sensitive
automaton model will bring redundant computation overhead. If the program exists the called
context sensitivities in many places, using context insensitive analysis method, existing the
impossible path problems,it will lead to the software attacked at runtime. In order to ensure the
model calculation precision and improve the scalability, it is necessary in front of the source code
modeling to analyze in the program function context sensitivity.

Based on software behavior modeling for application requirements, we put forward a software
source code context sensitive detection algorithm before softwaer behavior modeling. The
algorithm is mainly aimed at the statistical information of the function invocation context sensitivity.
According to the acquired context sensitive information to guide behavior modeling
software:(1)The source code which is function context insensitive can build FSA model;(2)Context
sensitive call points in the source code can build software model using PDA, Dyck
model;(3)Functions in the source code contain both the context sensitive and insensitive call points
program, can take the combination of FSA with PDA modeling software in the form of behavior.

4th International Conference on Computer, Mechatronics, Control and Electronic Engineering (ICCMCEE 2015)

© 2015. The authors - Published by Atlantis Press 1014

2. Related research

In recent years, Scholars put forward a series of behavior models associated with program
context analysis. Context insensitive software behavior models include finite state automaton[1],
abstract stack model[2] and the call graph model[3],and so on.Finite state automata (FSA) to
establish behavior models by statically analyzing software source codes, does not extract system
call context information. Abstract stack based on the static control flow analysis of program source
code, builds call graph model first, and then obtains the abstract stack model through the call graph
model,is essentially a context insensitive non-deterministic FSA. And call graph model with the
function calls actually is an NFA, also does not have the context sensitivity.

Context sensitive software behavior models mainly include traversing the call stack,the call
context tree, Dyck model and the HFA model, etc.Call stack [4] as the most convenient way to get
the context information, which uses a virtual stack structure as the research object.Spivey[5]
proposed dynamically creating a call context tree, by monitoring the procedure's position in the
calling context tree to make credible evaluation. A probabilistic model of the calling context
proposed by Bond et al[6]had a higher efficiency than calling context tree.Dyck model[7]can delete
redundant invalid calls and sub-paths without system calls by using the method of dynamic
compression, is concerned the application context sensitivity of binary code; HFA[8] is essentially a
DPDA model, not only can obtain better precision, but also is a context sensitive model.

These studies in front of the software model didn't consider the context sensitivity analysis as an
important role on the accuracy and efficiency of the improvement process. Context sensitive
detection algorithm by analyzing the relationships between the call points context sensitivity, will
be more beneficial to choose the right model for behavioral model.

3. Interprocedural analysis

The realization of the source code level context sensitivity exploration algorithm mainly depends
on Open64 compiler [9] generated function call graph.This paper mainly elaborate from Open64
compiler analysis framework,extended function call graph and call graph generation and traverse.
Function call graph generated during the interprocedural analysis,the framework is shown in figure
1.

Fig.1 Open64 Inter-procedure analysis frame

3.1 Interprocedural call graph generating formalization description

Function call graph generation mainly depends on the source code, in this paper, the
formalization description of function call graph generation process: Setting the input source

sourcecodeS , the call graph generation rely on interprocedural analysis[10](expressed as),mainly
include: interprocedural local analysis, interprocedural analysis, interprocedural optimization. The
latter analysis among the three analysis processes depend on the result of the former analysis,we set

1015

up the three analysis processes for the SIPL,SIPA,SIPO.Through the above analysis processes,we

obtain the source code for the function call graph, set to callgraphS
，having the following formula：

()callgraph sourcecode IPL IPA IPOS S S S S
 (1)

Among them, the process of local analysis (SIPL) main function is to collect all the summary
information, we put these aggregate information generically indicated as i,then SIPL can be
expressed as:

0

IPL

n

S i
 (2)

In the above formula, n represents the total number of required summary information.
Interprocedural analysis (SIPA) is establishing the call graph using the summary of information

obtained.during the SIPL. including interprocedural constant propagation, inline replacement and
alias analysis and other analysis methods. There are no absolute relationships between these
methods. The relationships between the analysis methods are represented as |. Set these analysis
methods respectively, M, G, P... , SIPA can be expressed as:

() | () | ()...
IPA IPL IPL IPL

S S S SM G P
 (3)

Interprocedural optimization (SIPO) mainly based on the results of SIPA, obtains intermediate
representation of the source code, converts into a function call graph. We set up the transformation
process is Change , the SIPO can be expressed as:

()
IPO IPA

Chan SgeS
 (4)

Through the above formalization, formula (1) can be described as:
0 0 0

(() | () | ()...))(
callgraph sourcecode

n n n

ChangeS S M i G i P i
 (5)

3.2 extended function call graph analysis

Program call graph[11] is used to indicate program interprocedural call relationships. Every call
point usually needs to be represented by one single node in the figure. In this case, the call graph is
actually a multi-figure.The accuracy of the call graph is a direct impact on the accuracy of the
function call context sensitivity analysis. Extended call graph is an improvement on the traditional
call graph. Each node in the figure represents a function. Extended call graph compared with the
traditional call graph extends some additional information. For the same function is called with
multiple points, extended call graph will put this function for multiple nodes.In a traditional call
graph, different call points point to the same node. In figure 2 as an example of traditional call
graph comparison with the extended call graph, Open64 generates extended call graph during the
interprocedural analysis by adding redundant nodes.

Fig.2 A extended call graph is an unfolded version of a traditional graph,(a) in a traditional

function, the call graph nodes sharing the function call,(b) in an extended call graph, the function
nodes having multiple function calls.

3.3 Call graph traversal

By checking the program each function body, Open64 add a side from the function call to the
called function for each function call site. In such way to traverse the entire program source code,

1016

we get the call and the called relationships between all of the functions, generating the function call
graph G = (N, E) of node and edge information, where N represents the function in the program, E
represents the function call relationship [12].

Table 1 Call graph traversal sequence in Open64
structure traversal sequence specific order
PREORDER preorder traversal center, right ,left
POSTORDER postorder traversal right, left,center

LEVELORDER level traversal
Top level to low level, each layer from right to
left

DONTCARE postorder traversal left ,right, center
Table 1 describes the different traversal methods of relevant information.Because of the function

call graph traversal has no effect on the validity of the context-sensitive detection algorithm, we
choose the preorder traversal as the access of each node of function call graph.

4. Context sensitivity exploration algorithm

Source level context sensitivity detection algorithm is proposed in this paper, mainly traverses the
acquired function call graph, to sort out the relationships between each call and called function
nodes and gets the context sensitive information CONTEXT_SENSITIVE_INFO and the call
information CALL_INFO. With statistical information, it is convenient to accurate software
behavior model.structure description as shown in figure 3:

{

int ;

int _ _ ;

int _ _ ;

float _ ;

int _ _ ;

float _ _ _ ;

int _ max_ ;

}

typeof struct

deep

total callsite num

insen callsite num

insen rate

insen callee num

ave insen callsite num

insen deep

CONTEXT_SENSITIVE_INFO

{

int _ ;

char _ [];

int _ ;

char _ [];

}

typeof struct

callsite deep

callsite name

callee deep

callee name

CALL_INFO

Fig.3 The structures of CONTEXT_SENSITIVE_INFO and CALL_INFO

Figure 4 is the context sensitive detection algorithm pseudo code, this algorithm analyses
sensitivity of the extended function call graph obtained by preorder traversal. L1-L5 is the
initialization section. First, we initialize the node iterator, generate context_sensitivity_info to store
sensitive information and callee_info to store relationship of the function call points. We set the
maximum call point number MAX_CALLSITE to ensure maximum application space, prevent
statistical information overflow. Algorithm process is described as follows:

(1) L6 is a loop structure, node iterator cg_iter traversal each node of the interprocedural call
graph.

(2) L8, L9 is aimed at the current traverse node, using the function Get_Sorted_Callsite_List to
obtain a list of the current nodes including the first level call points. The list saves the next level of
information of the current node.

(3) L10 will traverse the current node and the next node level call edges and save to
IPA_EDGE_INDEX structure. This call edge structure stores the directed call edges, distincts node
call relations, at the same time, initializes directed edge iterator ipa_edge_iter.

(4) L12 through edge iterator ipa_edge_iter traverses the context information of the node and the
call point, outputs the relationships of nodes which are called and the next level of nodes. Through
the iterative operation, the algorithm completes the context sensitive analysis of all nodes.

(5) L13 to 15 on the iterator ipa_edge_iter iterative operation, update the context sensitive
information CONTEXT_SENSITIVE_INFO and the CALL_INFO.

(6) L18, L19,after node iterator cg_iter and edge iterator ipa_edge_iter traversals are completed,
the algorithm calculates the insensitive call point number information, insensitive probability,
average context insensitive call points number and other information.

1017

Context_Sensitivity_Analysis(* PREORDER)

(1) ();

(2)

fp, order =

 cg_iter = Initial_IPA_Node_iter , order

context_sens

procedure File TRAVERSAL_ORDER

IPA_NODE_ITER IPA_CALL_GRAPH

CONTEXT_SENSITIVITY_INFO ;

(3) [];

(4) ();

(5) ();

(6)

itivity_info

callee_info

Initial_context_sensitivity_info context_sensitivity_info

 callee_func_num = Stat_Callee_func_Num cg_iter

CALLEE_INFO MAX_CALLSITES

int

for eac

(7) _ . ();

(8) < > ;

(9)

(10) <

 cg_iter

 node cg iter Current

callsite_list

callsite_list = node

h do

IPA_NODE *

 vector IPA_EDGE_INDEX

Get_Sorted_Callsite_List(, IPA_CALL_GRAPH);

vector IPA_E >

(12)

(13) . ++;

(14) (

ipa_edge_iter Initial_IPA_Edge_iter callsite_list

 ipa_edge_iter

context_sensitivity_info totol_call_site_num

Accumulate_Callee_Info

DGE_INDEX = () ;

for each do

);

(15) . = (,);

(16)

(17)

(18) _ _ _ (

callee_info

context_sensitive_info insen_max_deep Calculate_Insen_Max_Deep callee_info

Calculate Insen Callee Info context_sensit

IPA_CALL_GRAPH

endfor

endfor

);

(19) _ _ _ ();

(20) ();

ivity_info,callee_info

Calculate Other Probability Info context_sensitivity_info

Fprint_Vobose fp,context_sensitivity_info

 end;

Fig.4 Source code level context sensitivity exploration algorithm

5 Experiment and Analysis

The algorithm framework is based on Open64 5.0,adding the call relationship analysis for the
entended function call graph.Experimental platform for the IBM 3850 server, frequency 2.0 GHz
processor, 2 gb memory, L1 data cache to 32 KB, L2 cache is 256 KB, basic page for 8 KB. The
operating system kernel for Linux 2.6.18, version for Redhat Enterprise AS 5.0.

5.1 correction validation

First, the experiment tests the ordinary procedures where the main program contains function
call relations, mainly verify condition, loop, recursive three control structures in the program.
Results are as follows:

(1) For the general order of execution of the program, the algorithm has a better ability to
determine the function call context sensitive information.

(2) In the case of branch or loop statement contained in the main function or sub-function, as
shown in Figure 5. Function call point sensitivity relationship outputs the call depth 3 of the for
loop. Branch statements and sequence statements get the same context sensitive information.

Fig.5 Insensitive function calls in the branch and loop structure

(3) Recursive function is a function call site calls itself in the implementation process. Whether
it's called directly or using recursive functions in a conditional structure, the sensitivity of the depth
is 2.

All of above,the algorithm can correctly acquire function call point context sensitive
information.

1018

5.2 Effecti

Effecti
samples. T

Fig.6 conte
From Fi

of behavio
HFA mode
be able to m

From Fi
depth is le
depth of fu
node is cal
depth.

5.3 Compa

For the
the source
the source
FSA mode

e
s
4
4
4
4
m
t
t

As seen
This shows
a more acc

6 The conc

In this p
accurately
function ca
Spec2006

iveness Tes

iveness exp
Test results a

ext insensiti
g.6,the cont

or model, yo
el, Dyck mo
more accura
ig.7,results
ess than the
unction call
lled, and ha

arison of pr

validity tes
code level
code of be

el, Dyck mo
Table 2

experimenta
subject
444.namd
462.libquan
470.lbm
473.astar
mediabench
tmn-1.7
tmndec-1.7

n from the t
s that the co

curate mode

clusion

paper, we p
analyze th

alls tests, t
for and NP

st

periment us
as shown in

ive call poin
text insensi
ou need to
odel, abstra
ately describ
in addition
maximum

l point. The
s been calle

rocedure m

t subjects C
of behavio

ehavior mod
odel or abstr

software m
al

ntum

h2_video

table 2, the
ontext sensi
el.

propose a s
he function
the sensitivi
PB3.3.1, w

ses the C p
n figure 6 an

nt statistics
tive call poi
consider co

act stack mo
be the beha
to 473.asta
depth of th

e main reas
ed in the lea

modeling m

C language
or. This pap
de, compari
ract stack to

modeling me
FSA+PD
hybrid m
98.3%
97.4%
98.1%
97.3%
89.7%
93.6%
96.7%

FSA and P
itive detecti

source code
n call poin
ity of detec

we can prov

program in
nd 7:

 Fig7

ints proport
ontext sensi
odel combin
avior of the
ar and med
he function
son is some
af node, wil

methods

program in
per adopts th
ing the accu
o model. Th
ethod compa
DA
model

PDA mix-c
ion algorith

e level con
nts’ context
ction of the
ve that the

n Spec2006

7 The maxim
tion is highe
tive modeli

ned with FS
software m

diabench2_v
call graph,

e points in
ll have an im

n Spec2006
he method
uracy of thi
e results as
arison in Sp
FSA
model
73.9%
75.5%
70.7%
72.5%
90.8%
87.8%
80.9%
ontext sens

hm can guid

ntext sensit
t sensitive
e larger sou
algorithm

6 and NPB

mum insens
er. In the pr
ing methods
SA model an
odel.

video in the
the others
a function

mpact to the

and NPB3.
of combinin
s model wit
shown in ta

pec2006 and
Dyck
model
89.3%
88.7%
85.1%
86.9%
88.5%
87.9%
90.3%

sitive model
de the softwa

tivity explo
information

urce code f
can obtain

3.3.1 as ex

sitive call po
rocess of est
s such as P
nd other me

e maximum
has a same
call after th

e maximum

.3.1, We ar
ng FSA wi
ith the singl
able 2:
d NPB3.3.1

abstrac
stack mod

85.3%
83.7%
81.6%
84.9%
86.4%
85.8%
85.7%

l’s accuracy
ware behavio

oration algo
n. Through
function ca
 correct an

xperimental

oint depth
tablishment

PDA model,
ethods, will

insensitive
e maximum
he non-leaf

m insensitive

re modeling
th PDA for
le using the

t

del

y is higher.
or modeling

orithm, can
h the basis
ll points in

nd effective

l

t
,
l

e
m
f
e

g
r
e

.
g

n
s
n
e

1019

function sensitive information. The comparison of modeling methods shows: the method of FSA
and PDA hybrid model has a higher than accuracy other modeling methods. The next step of work:

(1) The algorithm utility platform for further expansion, in addition Open64 other compilers
can also be integrated the sensitivity detection.

(2) We will further expand the application scope of the proposed algorithm, to use it to detect
the context sensitivity of executable code, assembly code, etc.

(3) We can expand the function call relationship of the context sensitive information to more
diverse software behavior modeling, to improve the accuracy and efficiency of software analysis.

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China
(No.61472447), the National High Technology Research and Development
Plan(863)(2009AA012201).

References

[1] Fen Tao, Zhiyi Yin, Jianming Fu.Software behavior model based on system calls.[J].Computer
Science，2010，04:151.

[2] Wagner D, Dean D. Intrusion detection via static analysis[C]//Security and Privacy, 2001. S&P
2001. Proceedings. 2001 IEEE Symposium on. IEEE, 2001: 156-168.

[3] Xing Liu.The Homologous Analysis of Malware Based on function-call Graph[D].National
University of Defense Technology，2012.

[4] Feng H H, Kolesnikov O M, Fogla P, et al. Anomaly detection using call stack
information[C]//Security and Privacy, 2003. Proceedings. 2003 Symposium on. IEEE, 2003:
62.

[5] Zhen Li, Junfeng Tian, Xiaohui Yang.Program behavior monitoring based on system call
attributes[J].Journal of Computer Research and Development,2012,08:1676-1684.

[6] Bond M D, McKinley K S. Probabilistic calling context[C]//ACM SIGPLAN Notices. ACM,
2007, 42(10): 97-112.

[7] Giffin J T, Jha S, Miller B P. Efficient Context-Sensitive Intrusion Detection[C]//NDSS. 2004.

[8] Wen Li, Yingxia Dai, Yifeng Lian,et al. Context sensitive host-based IDS using hybrid
automaton[J].Journal of Software,2009,01:138-151.

[9] Tianwei Sheng, Wengguang Chen, Weimin Zheng. A context-sensitive pointer analysis phase in
Open64 Compiler[C].//2nd Annual Workshop on Open64 in Conjunction with IEEE/ACM
International Symposium on Code Generation and Optimization(CGO).2009.

[10]Reandy Allen,Ken Kennedy.Optimizing Compilers for Modern Architectures,A
Dependence-Based Approach[M].USA:Elsevier Science,2001.

[11] L.F.C.C.Mallens.A framework for data-acceress strategies in GPGPU programs[D].Technische
Universiteit Eindhoven,2013.

[12]Alfred V.Aho,Monica S.Lam,Ravi Sethi,et al. Compilers:Principles,Techniques and Tools
(Second Edition)[M]. Bejing:China Machine Press,2009.

1020

