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Abstract.  When some coefficients involved in nonlinear programming problems are taken as 
interval numbers, the problem becomes more challengeable than the original one. In the paper, a 
nonlinear programming problem with interval objective coefficients is considered, and a genetic 
algorithm is presented. Firstly, the original problem is transformed into a bilevel programming model 
without interval coefficients. In addition, a genetic algorithm is designed and used to deal with the 
transformed problem, in which the search space is decided by these intervals given in the original 
problem. Based on the proposed approach, the best and the worst optimal solutions as well as some 
intermediate solutions can be obtained.  Finally, a computational example is solved and the results 
show that the proposed algorithm is efficient and robust. 

1. Introduction 
The methodology for solving optimization problems has widely applied to many research fields. If 

the coefficients of optimization problem are taken as closed intervals, they will be categorized as 
interval-valued optimization problems. In recent years, the interval analysis method was developed to 
model the uncertainty in uncertain optimization problems, in which the bounds of the uncertain 
coefficients are only required. 

The linear programming problem with interval coefficients in objective function was discussed by 
Tanaka et al and Rommelfanger [1,2]. Using an order relation of the intervals, a linear interval 
programming problem was converted to a deterministic problem [3,4] . Levin [6] justified a more 
general approach to the optimization of systems with interval parameters . Lai et al[7]discussed  a class 
of linear programming problems with interval coefficients in both the objective functions and 
constraints.  

But for most of the engineering problems, the objective function and constraints are nonlinear, and 
they are always obtained through numerical algorithms. The reference [8] seems the first publication 
on nonlinear interval number programming (NINP).However, only the uncertain objective function is 
considered, and no approach is proposed to deal with the nonlinear constraints with uncertainty. So 
the reference [5] is suggested to solve the nonlinear interval number programming problem with 
uncertain coefficients both in nonlinear objective function and nonlinear constraints.  

Multiobjective linear programming (MOLP) under uncertainty has gained great interest in the past 
decades. A number of Multiobjective linear programming (MOLP) under uncertainty methods and 
their improvements have been proposed. An interval-parameter fuzzy linear programming method 
(IFMOLP) has been proposed.[9]. Carla and Carlos [10] provided an illustrated overview of the state of 
the art of Interval Programming in the context of multiple objective linear programming models. 
     This paper is organized as follows. The discussed problem and some notations are presented in 
Section 2, and a bilevel programming model is investigated in Section 3. A genetic algorithm is given 
based on the transform procedure in Section 4, and this is followed by the simulation as Section 5. We 
finally conclude our paper in Section 6. 

2. Discussed Problem and Some Definitions 
The nonlinear programming problems with interval coefficients can be formulated as: 
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     Here, x  is the decision-making vector, U  is the interval coefficient vector and ( )G x  is the 
constraint function vector.  

Since U  is the interval vector, Eq. (1)is uncertain. For any u U∈  fixed, Eq. (1) can be taken as a 
exact nonlinear programming problem, and by solving the problem, an optimal solution can be 
obtained. When all u  in U  is taken into account, a set of the optimal values of Eq. (1) are gotten. As 
two extreme values, the upper and lower bounds of the set are important for the decision maker to 
understand the risk involved better. Some definitions are presented as follows: 

Definition 1. (Optimal solution) For some u U∈ fixed, if x solves Eq. (1) , then x is called an 
optimal solution of Eq. (1) .  

Definition 2. (Best optimal solution) For any u U∈  with the optimal solution x , if there exists a 
bu U∈ , the corresponding optimal solution bx  satisfies:   

( , ) ( , )b bf u x f u x≤ ,   u U∀ ∈ .                                                                                               (3) 

then bx  is called the best optimal solution of Eq. (1).  

Definition 3. (Worst optimal solution) For any u U∈  with the optimal solution x , if there exists a 
wu U∈ ,  the corresponding optimal solution wx  satisfies:   

( , ) ( , )w wf u x f u x≥ ,   u U∀ ∈ .                                                                                               (4) 

then wx  is called the worst optimal solution of Eq. (1).  

The set of all optimal solutions is denoted by Ω , that is, 

{ | ,x u UΩ = ∃ ∈ such that x  is optimal}.                                                                                (5) 

Also, the set of all optimal values { ( , ) | }F f u x x= ∈Ω                                                          (6) 
In order to avoid too much theoretic analysis, we assume that for any u U∈ , there exists at least 

one optimal solution.  The upper bound is the best optimal value of Eq. (1), and the lower bound is the 
worst optimal value of Eq. (1).  

3. Bilevel Optimization Model 
      In order to solve Eq. (1), we solve the two extreme solutions in two steps. For the best optimal 
solution and  the worst optimal solution,  we solve  the Eqs. (7) and  (8) separately as follow: 
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In Eqs. (7) and (8), U can be seen as the leader’s vector, and x is the follower’s vector. One can 
obtain the best and worst solutions by solving theses bilevel programming problems.  

If Eqs. (7) and (8) are separately solved, the computation is expensive.  In the next section, an 
efficient genetic algorithm is designed, which can simultaneously deal with these two problems and 
provides some other solutions between the best and the worst ones according to the requirement of 
decision maker. 
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4. Proposed Algorithm 
In the section, we present a genetic algorithm using a special archive technique, which can provide 
the best and the worst solutions as well as some expected intermediate solutions.  

Chromosome Encoding. We take vectors in U as individuals, and the real coding scheme is 
adopted. Set the number of the intervals in the objective function be q, then each individual is a real 
vector with dimensions q. One can denote these individuals by 1 2, , , , .iu u u   

Fitness Evaluation. In order to obtain the best and the worst optimal solution in one run of the 
algorithm, we design a special evaluation scheme. Firstly, for each individual, the follower’s problem 
of Eqs. (7) and (8) are solved to obtain the optimal solution x. The objective is taken as evaluation 
criterion. In addition, the spread of objective values is also taken as the other criterion to evaluate 
individuals.  

Selction. According the objective value, the best and the worst solutions in the present population 
and offspring set are directly put into the next population. Meanwhile, some equal diversion points 
are taken between the two points, and the nearest individuals or offspring to these 
equal diversion points are put into the next population. If the individual number in the next 
population is less than the population size, other individuals are randomly chosen from the rest of the 
present population and its offspring.  
      Crossover Operator. Set bu  be the best individual found so far with regarding to the best 
optimal solution, and wu  be the best individual found so far with regarding to the worst optimal 
solution. Let u be a crossover parent individual. For iα  taken randomly in [0,2], i =1,2, crossover 
offspring can be generated as follows:  

1 1( )bo u u u= + α −                                                                                                               (9) 

2 2 ( )wo u u u= + α −                                                                                                                                  (10) 

Mutation Operator. Gaussian mutation is adopted. 
Proposed Algorithm.  In the subsection, we propose a genetic algorithm using a special archive 

technique (GA-SAT). 
Step1. (Initial population)  N  initial points are  generated randomly in search space U to form the 

initial population pop(0). Let g = 0, Arc=φ  and Na= r; 
Step2. (Fitness) Evaluate each point in pop(g) by solving objective values, and record the best 

solution bu  and wu , and all individuals are put into Arc; 
Step3. (Crossover and mutation) The designed crossover operator and the Gaussian mutation are 

adopted to generate all genetic offspring. The set of all offspring is denoted by O; 
Step4. (Offspring evaluation) Evaluate the fitness values of all offspring, and update  bu  and wu . 

all offspring individuals are put into Arc. If the element number of Arc is larger than r, then the 
crowding scheme is used to delete redundant elements such that the size of Arc is equal to r; 

Step5. (Next generation of population) The selection scheme is applied to generate the next 
generation of population pop(g+1); 

Step6. (Stopping criterion) If the termination condition is satisfied, then the algorithm is stopped 
and output Arc ; otherwise, let  g=g+1, go to Step 3. 

In Step4, when the crowding scheme is used, the best and the worst solutions found so far are 
always kept in Arc.  

5. Simulation 
We select the following example to illustrate the efficiency of the proposed algorithm. 
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Here, 1 [1.5,2.5]U = , 2 [5.5,6.5]U = , 3 [3.5,4.5]U = , 4 [790,810]U = , 5 [690,710]U = . 
Genetic parameters are taken as: the population size pop_size=50, the crossover probability 

pc=0.8, the mutation probability pm=0.01, and the maximum number of generations Max G=200. 
The proposed GA-SAT is executed 10 independent runs. The best optimal solution is denoted by 
Best_opt., whereas the worst one is denoted by Worst_opt. In 10 runs, the best ones are represented as 
F_b, and F_w means the worst ones. Also, 15 intermediate objectives are provided, which are 
between the best and the worst optimal objectives.  

 
 
 
 
 
 
 
 
 

6. Conclusion 
     Based on the proposed approach, this paper solved  a nonlinear programming problem with 
interval objective coefficients. We transformed the original problem into a bilevel programming 
model without interval coefficients, and presented a genetic algorithm which was used to  obtain the 
best and the worst optimal solutions  as well as some other intermediate solutions. For the best 
optimal solution and  the worst optimal solution, we solved the bilevel programming problem in two 
steps. From the computational example and the results, we can see the proposed algorithm is efficient 
and robust. 
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