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Abstract. Space station redocking is a long period process which suffers uncertainties from external 
environment and space station itself. Dynamic model of redocking is derived firstly, then generalized 
Polynomial Chaos (gPC) method is used to analysis the influence on attitude motion caused by 
uncertainties. Numerical simulation show that if redocking begins from “Zero State”, then 
uncertainties cause great impact on the process. 

1. Introduction 

The technology of redocking is one of the key problems for space station on-orbit assembly. 
Redocking is defined as transferring the docked cabin from the axial port to the lateral port for the 
benefit of next docking. Since the configuration and inertia of space station would change 
dramatically during redocking, so dynamic modeling and analysis of the system become critical. 
Although the existing works [1-3] have researched on the dynamic models in terms of redocking, but 
they didn’t take the uncertain factors of redocking into consideration. 

However, the uncertainty factors can seriously impact the work of space station. These factors are 
in the result of the special environment of the space and the structure of the space station. It is worth 
exploring the influence of uncertain factors in the process of redocking. In the recent years, 
generalized Polynomial Chaos (gPC), a spectrum analysis method, is popular in the research of 
uncertainty analysis. For a smooth function model, gPC can even realize spectrum convergence [4]. 

This paper firstly establish dynamic model of redocking, then introduces the basic principles of 
gPC and especially its algorithm of stochastic collocation method, and studies on the impact of the 
uncertain factors upon attitude angles in the process of redocking.  

2. Redocking model of space station 
Space station is a complex rigid-flexible coupling multibody system which mainly composed of 

core cabin, node cabin, several test cabins, manipulator and several solar arrays. This paper explores 
how the uncertain factors affect the attitude of space station when it redocks, to facilitate the research, 
the original system is simplified as a two rigid body model consisting core cabin and node cabin 
(since the two cabins are connected rigidly, they are together marked as A) and a test cabin (marked 
as B). This section uses Kane method to model the simplified system. 
2.1 Coordinate systems.  

In the process of modeling, four orthogonal coordinate system are introduced: the geocentric 
inertial coordinate frame E E EX Y Z , the orbital coordinate frame O O OX Y Z , the body coordinate frame of 
A A A AX Y Z and B B B BX Y Z , and the entire system coordinate frame S S SX Y Z . The unit vectors for each 
coordinate frame are =e o a b si i i i i, , , , (i 1,2,3)  respectively. 
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2.2 Attitude Coordinate.  

In this paper, the angles q q q1 2 3, , are used to describe the orientation of S S SX Y Z  relative to O O OX Y Z , 
and they are named as pitch angle, roll angle, and yaw angle respectively, and the rotation sequence is 
Body213. The attitude angle of B relative to A is a b,  and the rotation sequence is Body23.  
2.3 Generalized speed.  

According to orbital mechanics, if the distance from the geocentre to the space station’s C.M. is R, 
then the absolute velocity of the space station’s with respect to the geocentre is m= oE S

1/ Rv , and the 
angular velocity of the orbital coordinate frame with respect to the inertia coordinate is 

m= oE O 3
2/ Rw , in which m refers to the Earth gravitational constant. 

If the angular velocity of S S SX Y Z  with respect to O O OX Y Z  is O Sw , assuming that the system 
generalized speed =i(i 1,2,3)u  is the coordinate component of O Sw  expressed in O O OX Y Z , i.e. 

= + +o o oO S
1 1 2 2 3 3u u uw . In accordance to the superposition principle of angular velocity, the absolute 

angular velocity of S S SX Y Z  with respect to E E EX Y Z  is = +E S E O O Sw w w . 
Based on the conversion relation between orbital frame and the system frame, the kinematic 

equation of the system is: 
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In which i i,s c refers to q qi isin , cos , respectively.  
The absolute velocities of the center of mass of A and B are E Av  and E Bv , and their absolute 

angular velocities are E Aw and E Bw , respectively, which can be derived on the basis of the velocity of 
the systematic center of mass E Sv , the angular velocity of the system E Sw and the geometric 
relationships within the system. The detail derivation is complex and tedious, it is omitted here but 
can be referred to the literature[5]. The partial velocities and partial angular velocities of A and B can 
be derived as: 
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In which =K A,B , =r 1,2,3 . 
2.4 Generalized force.  

Considering the control moment of A to B as the internal force within the system, then the external 
forces to the system are gravity gF  and gravitational gradient torque gT : 

m m- 醋 ，KK K
g K g K K K3 5

K K

3= =     F R     T R J R
R R
m                                                                       (3) 

In which KR  is the position vector from the geocenter to K body’s center of mass, Km  is the mass 
of K, and KJ is the inertia dyad of K relative to the center of mass. 

Generalized active force rF  and generalized inertia force *
rF  are defined as:  
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In which E Ka is the absolute acceleration of K’s center of mass, E Ka  is the absolute angular 
acceleration of K. 
2.5 System state equation.  

As Kane’s equation reveals, the sum of generalized active force and generalized inertia force is 
equal to 0: 

+ =*
r r 0 (r= 1,2,3)F F                                                                                                        (5) 
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The attitude kinematic equation (1) and the attitude dynamic equation (5) constitute the system 
governing equation and can be combined into one equation: 

( )& , ,X = f X Pt                                                                                                                   (6) 
In which = ?T T T 6[ , ]X uq ¡ , and P refers to some other system parameters. If the initial state 

0X and the system’s parameter P are known, then the state variable X  at any moment t  can be 
calculated. As a result, the equation (6) can be seen as the deterministic model of the system.  
2.6 System’s uncertainty model.  

In a real system, some parameters usually don’t equal to nominal values exactly but only random 
values around it. Since it is impossible to measure the precise values, these parameters are defined as 
uncertainty parameters of the system. As a result, the system parameter P can be divided into 
uncertainty parameters Z and certainty parameters D . Then the system equation (6) can be 
transformed to be: 

( )& , , ,X = f X Z Dt                                                                                                                   (7) 
As the certainty parameter D  is already known so that the equation (7) can be simplified into:  

( )& , ,X = f X Zt                                                                                                                   (8) 
In the equation (8), the value of the state variableX at the moment t  is relative to real values ofZ . 

The uncertainty of Z decides the uncertainty of X , which can be described as ( ),X = X Zt . So 
equation (9) is called uncertain model of the system. 

Suppose the observation needs researching is Y , which is a value that can be deduced from the 
system equation, i.e., ( , )Y = Y X ,Zt . Y  can be a scalar or a vector. Normally, the statistical 
information of Y in the effect of Z is expected to be researched. Among the information, the average 
valueY and the variance s (or standard deviation s ) are seen as the most important. To solve the 
problem, the next section will explore how to use gPC to study the probability distribution of Y . 

3. The method of gPC 

gPC is essentially a spectrum method which means to have a random quantity or a random process 
expand orthogonally on the gPC basis function. This section introduces the gPC basis function at first 
and then discusses how to process gPC expansion. 
3.1 gPC basis function 

For a random variable Z, Nth-order gPC basis function =f N
k k 0{ (Z)} is a orthogonal set consist of 

polynomials from order 0 to order N, in which the kth term f k(Z)  is a polynomial scalar function of Z 
of kth-order, The orthogonal conditions of gPC basis function are defined as:  

( ) ( ) g d轾f f = ?臌 ¥j jkj k ,  j , kZ ZE                                                                                           (10) 
In which g[  ]E[  means the expectation of the expressions in bracket, g = f ?2

j j[ ( )]Z ¡E is the 
normalization factors, d Îjk ¡ is the Kronecker function, and ¥ is non-negative integer set. 

If = L1 d[ , , ]Z Z Z is a d-dimensional random vector and iZ = L(i 1, , d) are the independent and 
identically distributed random variables, then d-dimensional Nth-order gPC basis function 

( ) =Fk k
N

0{ }Z  is defined as a orthogonal set consist of polynomials from order 0 to order N, in which the 
k-th term ( )Fk Z  is a d-dimensional polynomial vector function of degree k  by multiple 
multiplication of the single variable gPC: 

( )F = f 譮fLk 1 2 d1 2 dk k k( ) ( ) ( )Z Z Z Z                                                                                           (11) 
In which subscript = Lk 1 d(k , , k )  is a d-dimensional index, Î L（ 1, , ）ik i= d¥  and 
= + + +Lk 1 2 dk k k .The orthogonal conditions of ( ) =Fk k

N
0{ }Z are: 

g d轾F F =臌j k j jk( ) ( )Z ZE                                                                                                      (12) 
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In which g g g g轾= F = ?×臌 Lj j 1 2 d
2

j j j ¡E  is normalization factor, and d d d d= ?× Ljk 1 1 2 2 d dj k j k j k ¡ is the 
Kronecker function of d-dimension.  

In application, proper gPC basis function should be chosen according to distribution type of Z  to 
realize optimal convergence rate. Readers are recommended to refer to the literature [6] to know the 
corresponding relation between random variables and the gPC basis function.  
3.2 The gPC expansion 

The orthogonal conditions ensure that the gPC basis function is an orthogonal basis within the 
definition domain ofZ . As a result, the approximate expansion of the observation Y in terms of 

( ) =Fk k
N

0{ }Z  is: 

( ) ( ) ( )= Få k k
k

c, , ,Y X Z X Zt t                                                                                           (13) 

In which  

( ) ( )= Fòk k
k

c 1 , , dY X Z Z Zt
g

                                                                                          (14) 

kc is called the expansion coefficient of gPC and on the same dimension with the observationY . 
However, since the unknownY exists on the both sides of the equation, there is no direct way to solve 
the equation. In this case, the solution of kc should go first. Currently, there are two methods to reach 
the goal: one is the stochastic galerkin method and the other is stochastic collocation method [7]. In 
the application of stochastic galerkin method, researchers need to derive the random differential 
equations which can be difficult when the system model is complex. So this paper will focus on the 
stochastic collocation method in the following section. 
3.3 The Stochastic Collocation Method of gPC 

The biggest difficulty in solving kc is to calculate the integral terms in the equation (14) because of 
Z  is still unknown. To explain the basic principles of the Stochastic Collocation Method, we’d better 
briefly review the Gaussian numerical integration for univariate function. Considering the following 
integration problem: 

= òD
I ( )df x x                                                                                                                (15) 

According to the method of Gaussian numerical integration, the integration of I is approximately 
equal to: 

» å k k
k

I ( )f x w                                                                                                                 (16) 

In which kx is the Gaussian integral point in the definition domain of x , and kw is the corresponding 
weight of kx .Clearly, as long as each kx and kw are known, each k k( )f x w can be calculated out. Then 
approximate value of the integration of I. is the sum of every single k k( )f x w . 

Similarly, the strategy in realizing the univariate integration can also be applied to approximately 
solve the integration component in the equation (14). Firstly, Fk( , , ) ( )Y X Z Zt can be seen as an 
integrand concerningZ . Then, select the collocation points jZ  in the definition domain of Z  and 
calculate its corresponding weight jW . The process of selecting collocation points actually transfer 
the uncertainty quantity Z  to certainty quantity so that the integration part in equation (14) can be 
carry out by multiplying function values and the corresponding weights. As a result, the equation (14) 
is approximately equal to: 

g =

蛔F ?åk k
k

c
Q

j j j
j 1

1 ( , , ) ( )Y X Z Zt W                                                                                           (17) 

in which Q  refers to the number of collocation points. If jZ  and jW  are proper selected, and 
function expression of ( ), ,Y X Zt and ( )Fk Z  is known, then kc  can be approximate calculated by 
equation(17), so that gPC expansion is solved.  
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4. Simulation analysis 
Assuming that the space station moves around the Earth in a circular equatorial orbit of 500 km 

height above the ground from west to east, the duration of redocking is one orbit period T . To 
improve simulation efficiency, the system governing equation is transformed to dimensionless form, 
using the average radius of the earth 0R  as reference length and its corresponding orbit period 

p m3
0 0T = 2 R /  as reference period, and the dimensionless time is marked as t . The pitch angle q1  is 

selected as observation. In the process of redocking, the attitude of the system is not controlled. Take 
the mass of the space station “Mir” as a reference value [8]. 

There are two typical initial conditions: (1) at the moment t 0 , the system is at the zero state. That is, 
the initial attitude angle 00=q  and the angular rate 00=w ; (2) at the moment t 0 , the system is at the 
preceding state. That is, there exists the non-zero initial attitude angle and angular rate 0w , but the 
system will return to the zero state when redocking finishes.  

In the following parts, this paper will mainly analyze the influence of three kinds of uncertain 
factors on the pitch angle q1 : (1) the uncertainty of cabins’ mass; (2) the uncertainty of the mass of 
center; (3) the uncertainty of the initial attitude angle and angular rate. Suppose all uncertainties are 
all uniformly distributed, Legendre should be selected as the basis function of gPC according to Table 
1 and determine the highest order of the basis function N=4.  
4.1 Uncertainty of cabins’ mass 

Suppose that both A and B’s mass deviate from nominal value within ± 10% . The curves in the 
upper and lower graphs in Fig. 1 describe the pitch angle in the two kinds of initial conditions. 
Apparently, the two curves of gPC perfectly overlap with those of the deterministic system, and the 
standard deviations at the nodes can be barely seen. This means that the deviation of the mass 
within ± 10%  doesn’t obviously affect the pitch angle q1  in the process of redocking.  

 
Fig 1. Pitch Angle Curve with Mass Uncertainty     Fig 2. Pitch Angle Curve with C.M. Uncertainty 
 
4.2 C.M. uncertainty 

Suppose that the deviation between the real C.M. of A and B and the reference C.M. on each 
dimension is within ± 0.1m. Figure 2 shows the pitch angle curves of redocking in the two kinds of 
initial conditions. When redocking starts at the zero state, the real curve overlaps with the reference 
curve before the moment 4 but deviates obviously further and further after. However, when starts at 
the preceding state, the two curves match very well. 
4.3 Initial state uncertainty 

Suppose there is a deviation of ± 1deg in terms of the initial attitude angle and of ± 0.1deg/ s 
regarding the initial angular rate. The pitch angle curves with initial state uncertainty are like the 
curves in the Fig2. Apparently, the curve of redocking from the zero state deviates more and more 
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seriously although the deviation at the very beginning is minimal. Nevertheless, the state uncertainty 
rarely influences the pitch angles if the space station redocks from the preceding state.   

 
4.4 Cause analysis 

After analyzing the three uncertainty factors, we can conclude that the change of pitch angle is also 
related to the initial state. The influence of the zero state is obvious, however, the influence of the 
preceding state is so small that can be neglected. The reason is that the shape of the space station 
changes during redocking in result of big variation of the system inertial and so attitude motion, both 
the shape and mass property of the whole space station become asymmetry after redocking.  

If the space station starts redocking at the zero state, the induced moment in the result of gravity 
gradient torque and the system angular rate will become bigger and bigger as the asymmetry of the 
space station in the process appears more and more obvious. In this case, the initial deviation 
accumulates and be amplified in a short time so that the attitude angle will deviate further compared 
with the reference angle value. If the station starts redocking at the preceding state, the preceding 
angle and its angular rate can be partially cancelled by the attitude angle and its angular rate in the 
result of gravity gradient torque. Therefore, the preceding angle tends to increase firstly and decrease 
later. Since the range of the preceding angle changing is slight, the deviation can remain in a low 
level.   

5. Conclusion 

This paper uses polynomial chaos (gPC) to analyze the influence of the uncertainties on redocking. 
In addition, mass uncertainty barely affects the changes of attitude angle in the two kinds of initial 
state. However, even minimal C.M. uncertainty or initial state uncertainty can lead to significant 
deviation in the end if redocking starts at the zero state. To relieve such situation, it is useful to design 
the space station to start redock from the preceding state. 

References 

[1].  Guangxing Li,Yuzhi Xiao,Shao-Hua Bu,et al. Research on Attitude Control Scheme during 
Space Station Assembly [J]. Manned Spaceflight. 2012, 18(1): 22-29. 

[2].  Yao Y, Guo J, Zhao H, et al. N-body Flexible Dynamics of the Space Station during Module 
Redocking via Manipulator System: AIAA Guidance, Navigation, and Control Conference, 
Toronto, Ontario, Canada, 2010[C]. AIAA, August 2-5. 

[3].  Yanhong Ma,Jun Zhang,Tingrong Guo. The Attitude Command Optimization during Space 
Station Assembly [J]. Manned Spaceflight. 2010, 16(1): 17-20. 

[4]. Xiu D. Numerical Methods for Stochastic Computations: A Spectral Method Approach [M]. 
Princeton, New Jersey: Princeton University Press, 2010. 

[5].  Rui Chen, Shengjing Tang, Guojiang Sun. Simulation and Analysis of Space Station 
Redocking[C]. Danang, Vietnam: Springer Verlag, 2014. 

[6]. Xiu D, Karniadakis G E. The Wiener-Askey Polynomial Chaos for Stochastic Differential 
Equations [J]. SIAM J. Sci. Comput., 2002, 24(2):619-644. 

[7]. Xiu D. Efficient Collocational Approach for Parametric Uncertainty Analysis [J]. 
Communications in Computational Physics, 2007, 2(2):293-309. 

[8]. Fehse W. Automated Rendezvous and Docking of Spacecraft [M]. Cambridge University Press, 
2003. 

 

1058




