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Abstract. An original method is presented in this paper, which attempts to make use of the kalman 
filtering algorithm and maintain accuracy in position, attitude and velocity estimation for a fast 
moving projectile, the velocity and the pose (position and attitude) could also be obtained, then the 
simulation are presented and compared with the conventional least square method. The simulation 
result showed that the kalman filter algorithm is more accurate and stability than the conventional 
least squares algorithm, meanwhile, the trajectory of the projectile obtained by the kalman filter 
algorithm is very close to the real trajectory. 

1.Introduction 

It is necessary to capture the motion parameters of fast moving projectiles, such as pose 
(including position and attitude), velocity (including speed and moving direction), and angle of 
attack (AOA, the angle of the attitude and the moving direction). These parameters have major 
influence on the weapon performance and accuracy. Until recently, many optoelectronic-based [1-
2], image-based methods [3-6], etc., have been employed to perform this task. Because of the 
relatively high precision signal that the radar systems could provide, and maturity of the signal 
processing algorithms, radar tracking methods have many benefits against alternative methods 
especially the target is a fast moving[7-9]. Therefore, it is a trend to develop a new method for 
projectile tracking such as high-precision pose and velocity measuring. 

An original method is presented in this paper, which attempts to make use of the kalman filtering 
algorithm and maintain accuracy in position, attitude and velocity estimation for a fast moving 
projectile, the velocity and the pose (position and attitude) could also be obtained, then the 
simulation are presented and compared with the conventional least square method. 

2. Measuring method for projectiles tracking  

In order to capture the motion parameters of fast moving projectiles, it can be divided into three 
steps. 

Firstly, a system of gathering data about where the projectile is located should be provided. The 
system discussed in this paper is radar. Secondly, a method for accurate estimation of the 
projectile's position, velocity should be presented. The method used in this paper is kalman filtering 
algorithm for projectiles tracking, finally, once the enough data can be collected and analyzed, the 
projectile trajectory can be determined and simulated using the computer 

3.Target detection 

The purpose of this step is to take raw environmental data and turn it into a series of points 
plotted in Cartesian space. These points represent the trajectory of the projectile and are made up of 
a list of points (x0, y0, z0)..(xn, yn, zn) where n is the number of positions sampled and a time 
difference t which is the time difference between each sample[10]. 

For tracking objects at both long and short distances, Tracking radar systems are used to measure 
the target’s relative position in range, azimuth angle, elevation angle, and velocity. Then, by using 
and keeping track of these measured parameters the radar can predict their future values. Target 
tracking is important to military radars as well as to most civilian radars. In military radars, tracking 
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is responsible for fire control and missile guidance; in fact, missile guidance is almost impossible 
without proper target tracking. Tracking techniques can be divided into range/velocity tracking and 
angle tracking. 
A. Angle Tracking 

Angle tracking is concerned with generating continuous measurements of the target’s angular 
position in the azimuth and elevation coordinates. The accuracy of early generation angle tracking 
radars depended heavily on the size of the pencil beam employed. Most modern radar systems 
achieve very fine angular measurements by utilizing monopulse tracking techniques. 

Tracking radars use the angular deviation from the antenna main axis of the target within the 
beam to generate an error signal. This deviation is normally measured from the antenna’s main axis. 
The resultant error signal describes how much the target has deviated from the beam main axis. 
Then, the beam position is continuously changed in an attempt to produce a zero error signal. If the 
radar beam is normal to the target (maximum gain), then the target angular position would be the 
same as that of the beam. In practice, this is rarely the case. 

In order to be able to quickly achieve changing the beam position, the error signal needs to be a 
linear function of the deviation angle. It can be shown that this condition requires the beam’s axis to 
be squinted by some angle (squint angle) off the antenna’s main axis. 
B. Amplitude Comparison Monopulse 

Amplitude comparison monopulse tracking is similar to lobing in the sense that four squinted 
beams are required to measure the target’s angular position. The difference is that the four beams 
are generated simultaneously rather than sequentially. For this purpose, a special antenna feed is 
utilized such that the four beams are produced using a single pulse, hence the name 
“monopulse.”Additionally, monopulse tracking is more accurate and is not susceptible to lobing 
anomalies, such as AM jamming and gain inversion ECM. Finally, in sequential and conical lobing 
variations in the radar echoes degrade the tracking accuracy; however, this is not a problem for 
monopulse techniques since a single pulse is used to produce the error signals. Monopulse tracking 
radars can employ both antenna reflectors as well as phased array antennas. 

Fig.1 show a typical monopulse antenna pattern. The four beams A, B, C,and D represent the 
four conical scan beam positions. Four feeds, mainly horns, are used to produce the monopulse 
antenna pattern. Amplitude monopulse processing requires that the four signals have the same phase 
and different amplitudes. 

The radar continuously compares the amplitudes and phases of all beam returns to sense the 
amount of target displacement off the tracking axis. It is critical that the phases of the four signals 
be constant in both transmit and receive modes. For this purpose, either digital networks or 
microwave comparator circuitry are utilized. Fig.2 shows a block diagram for a typical micro-wave 
comparator, where the three receiver channels are declared as the sum channel, elevation angle 
difference channel, and azimuth angle difference channel. 

To generate the elevation difference beam, one can use the beam difference (A - D) or (B - C). 
However, by first forming the sum patterns (A+B) and (D+C) and then computing the difference 

(A+B)-(D+C), we achieve a stronger elevation difference signal, et ,Similarly, by first forming the 
sum patterns (A+D) and (B+C) and then computing the difference (A+D)-(B+C), a stronger 

azimuth difference signal, az , is produced. 

        
Fig.1. Monopulse antenna pattern                                          Fig 2. Monopulse comparator 
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C. Phase Comparison Monopulse 

Phase comparison monopulse is similar to amplitude comparison monopulse in the sense that the 
target angular coordinates are extracted from one sum and two difference channels. The main 
difference is that the four signals produced 

in amplitude comparison monopulse will have similar phases but different amplitudes; however, 
in phase comparison monopulse the signals have the same amplitude and different phases. Phase 
comparison monopulse tracking radars use a minimum of a two-element array antenna for each 
coordinate (azimuth and elevation), as illustrated in Fig.3. A phase error signal (for each coordinate) 
is computed from the phase difference between the signals generated in the antenna elements. 

 
Fig.3. Single coordinate phase comparison monopulse antenna 

Consider Fig.3; since the angle  is equal to 2   , it follows that 
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The phase difference between the two elements is then given by 

 1 2

2 2
sinR R d

  
 

    

where  is the wavelength. The phase difference   is used to determine the angular target location. 
Note that if 0   , then the target would be on the antenna’s main axis. The problem with this 
phase comparison monopulse technique is that it is quite difficult to maintain a stable measurement 
of the off boresight angle   , which causes serious performance degradation. This problem can be 
overcome by implementing a phase comparison monopulse system as illustrated in Fig.4. 

The (single coordinate) sum and difference signals are, respectively, given by 
1 2( ) S S    

1 2S S    
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where the  and  are the signals in the two elements. Now, since S1 and S2 have similar amplitude 
and are different in phase by   , we can write 

1 2
jS S e   

 
Fig.4. Single coordinate phase monopulse antenna with sum and difference channels 

It follows that 

   2 1 jS e      

   2 1 jS e     

The phase error signal is computed from the ratio    . More precisely, 
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which is purely imaginary. The modulus of the error signal is then given by 

tan
2

      
 

This kind of phase comparison monopulse tracker is often called the half-angle tracker. 
D. Range Tracking 

Target range is measured by estimating the round-trip delay of the transmitted pulses. The 
process of continuously estimating the range of a moving target is known as range tracking. Since 
the range to a moving target is changing with time, the range tracker must be constantly adjusted to 
keep the target locked in range. This can be accomplished using a split gate system, where two 
range gates (early and late) are utilized. The concept of split gate tracking is illustrated in Fig.5, 
where a sketch of a typical pulsed radar echo is shown in the figure. The early gate opens at the 
anticipated starting time of the radar echo and lasts for half its duration. The late gate opens at the 
center and closes at the end of the echo signal. For this purpose, good estimates of the echo duration 
and the pulse centertime must be reported to the range tracker so that the early and late gates can be 
placed properly at the start and center times of the expected echo. This reporting process is widely 
known as the “designation process.” 

 
Fig 5. Illustration of split-range gate 
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The early gate produces positive voltage output while the late gate produces negative voltage 

output. The outputs of the early and late gates are subtracted, and the difference signal is fed into an 
integrator to generate an error signal. If both gates are placed properly in time, the integrator output 
will be equal to zero. Alternatively, when the gates are not timed properly, the integrator output is 
not zero, which gives an indication that the gates must be moved in time, left or right depending on 
the sign of the integrator output. 

4.Accurate target positioning 

Once a projectile has been detected, it needs to be tracked to determine its trajectory. The kalman 
filtering algorithm is used to estimation the accurate position and velocity of the fast moving 
projectile[11]. 
A. the principle of the Kalman filter alogrithm 

Kalman filter is an optimal Recursive Data Processing Algorithm. It consists of the following 
two phases- (i) prediction and (ii) correction. The first refers to the prediction of the next state using 
the current set of observations and update the current set of predicted measurements. The second 
updates the predicted values and gives a much better approximation of the next state. It attempts to 
achieve a balance between predicted values and noisy measurements. The values of the weights are 
determined by modeling the state equations. 

Kalman filter algorithm can be given as 
-1. . +kP A P A Q  

Kalman filter working depends on Kalman update given by 

  11 1. . .T T
k k KK P H H P H R

    

  0 0, .
T

k c cx x K x y H x    

Where: ,c cx y -centre coordinates of the ball, R -measurement noise covariance, kK -Kalman 

update, 0x -initial estimation of the ball. 
From the above equation, it is clear that the kalman filter gives more preference to the 

measurement values, if they are trusted to be nearer to the actual values or else, to the estimated 
values. 

1 1 . .k k kP K H P    

 T

k kR E v v  

Vk -standard deviation of measurement noise. 
These equations clearly indicate that the kalman gain depends on process noise covariance(R). 

This kalman gain, in turn alters the predicted position. Hence initialization of the kalman filter is an 
important task for a kalman filter designer. The flow chart of kalman filter alogrtihm is shown as 
Fig.6. 

 
Fig.6 The flow chart of kalman filter alogrtihm 
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From the above equation, it is clear that the kalman filter gives more preference to the 
measurement values, if they are trusted to be nearer to the actual values or else, to the estimated 
values 
B. The process of the tracking based on kalman filter alogrtihm 

In data processing, it requires the use of the limited observation time to collect observations to 
estimate the state of linear discrete-time dynamic systems. Assume that the system model equation 
is that: 

1 kk k k k k ks s B u G v    
 

 
Where: Sk-n dimensional vector of  system status in k time 

Φk-nn order state transition matrix in k time 
uk-the n dimension of the input vector 

            Bk-the np order of the input matrix 
vk-q dimensional random vector, a Gaussian white noise distribution; 
Gk- nq dimensional real-valued matrix, that is: 

{ } 0kE v 
 

{ }T T
k k j j k kjE G v v G Q 

 
Observation equation is a linear function, namely 

k k k k kz H s L w 
 

Where: Zk-m dimension observation vector in k time; 
 

Hk-mn order of the observation matrix; 
wk-m dimensional measurement noise, Gaussian white noise distribution; that is 

{ } 0kE w 
 

{ }T T
k k j j k kjE L w w L R 

 
Assume that vk and wk is independent of each other, namely 

{ } 0T
k kE v w   

Utilizing the results of the MMSE estimates are derived by the system state prediction equation 
of state filter equations, filter gain equation, the residual covariance matrix, usually called Kalman 
filter equations. Kalman filter equations can be derived based on the assumption of linear model and 
the Gaussian distribution, application guidelines to obtain the best estimate of the optimum filter to 
be the distribution function of the process and not make any assumptions using linear least square 
estimate. 

Assume /k ks is the least mean-square estimate of the sk before and after k time, that is: 

/ { / }k
k k ks E s z

 
Where 0 1( , , , )k

kz z z z   
The corresponding covariance matrix is shown as: 

/ //
ˆ {( ) ( ) / } { / }T k T k

k k k kk k k k k kP E s s s s z E s s z        Where: /k kk ks s s     

It is known /k̂ kP  as k time filter covariance matrix, the iteration relations of the state predicted 
value in k+1 time, the covariance matrix and the filter value in k time and covariance matrix is 

established, the state predicted value in k+1 time 1/k ks 


 is exported as: 

1/ /k k k k k k ks s B u   
 

Its corresponding error is: 

1/1/ 1/ /k kk k k k k k k k ks s s s G v       
 

The prediction covariance matrix in k+1 time is show as: 
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1/ 1/ 1 /
ˆ { / }T k T
k k k k k k k k k kP E s s z P Q          

The residuals and covariance matrix is deduced as follow, Set 1/k kz 


as the minimum mean 

square error estimation between 
kz  and 

1kz 
 namely: 

1 1{ / }k
k kz E z z 

 
Observation prediction model can be obtained as follows: 

1 1 1/k k k kz H s    

According to the residual definition as: 

1/1 1 1 1/ 1k kk k k k k k kv z z H s L w          

Covariance matrix of the residuals can be obtained as follows: 

1 1 1 1 1/ 1 1
ˆ{ / }T k T

k k k k k k k kE v v z H P H R            

Assume 1k   time and previous observed value 
1kz 
 is obtained, the corresponding filter values 

1/ 1k ks  


 and covariance matrix 1/ 1k kP   . can be exported. As the definition of the minimum estimate 

of covariance 1/ 1k ks  


,that is: 
1

1/ 1 1 1 1{ / } { /( , )}k k
k k k k ks E s z E s z z
     

 
Using the minimum mean square estimate to obtain: 
 1( )xz zzx x P P z z    

1 T
xx xz zz xzP P P P P   

�
1/1/ 1/{ / }T k

k kxx k k k kP E s s z P       
�

1/1/ 1 1{ / }T k T
k kxz k k k kP E s v z P H       

1 1 1{ / }T k
zz k k kP E v v z       

Filter recursive formula for the 1k   time available is shown as: 
1

1/1/ 1 1/ 1/ 1 1 1( )T
k kk k k k k k k k ks s P H z z 
          

) 

1/ 1 1 1/( )k k k k k ks K z z     
 

The filter gain matrix 1kK   is defined as Kalman gain, that is: 
1 1

1 1/ 1 1 1/ 1 1 1/ 1 1
ˆ ˆ ˆ( )T T T

k k k k k k k k k k k k kK P H P H H P H R  
             

It can be seen that the filter value in 1k   time is the predicted value in k+1 time adding the 

correction value for the observation in k+1 time, the weight effect is 1kK  . The covariance matrix 
filter is shown as: 

1
1/ 1 1/ 1/ 1 1 1 1 1 1 1/

ˆ ˆ ˆ ˆ ˆ(1 )T
k k k k k k k k k k k k k kP P P H H P K H P 
               

This article intends to adopt the following steps to complete the tracking filter method: 
(1) According to the observed and calculated values Z1 and Z2 of the two previous positions, the 

initial value of the Kalman filter is obtained as: 

2/2 2 2 1[ , ( ) / ]
T

s z z z T 
 

（2）Assume the observation noise w is a stationary noise variance and zero-mean Gaussian 
distributed random variables, the process noise is independent of the initial conditions. The 
corresponding covariance matrix is exported as the following form 

2 2

2/2 2 2 2

/

/ 2 /
w w

w w

T
P

T T

 
 
 

  
   

The formula of the estimated value of the Kalman filter is given as follows： 
By filtering covariance matrix initial value to calculate the predicted covariance matrix, 
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namely： 

1/ /
ˆ ˆ T
k k k k kP P Q      

The estimated covariance matrix can be calculated as 
1

1 1/ 1/ 1
ˆ ˆ( )T T

k k k k k kK P H HP H R 
      

Filter covariance can be obtained as： 

1/ 1 1 1/
ˆ ˆ( )k k k k kP I K H P      

By the state of the predicted value, and the Kalman gain observed values, we can calculate the 
value of Kalman Filter： 

1/ 1 1/ 1/1 1 1( )k k k k k kk k ks s K z H s         
 

5.Simulation and analysis 

In this section, the performance of kalman filter algorithm is compared with the conventional 
least squares algorithm. The real trajectory of the projectile is also provided to verify the kalman 
filter algorithm. All the simulations are performed at one platform under the same environment. 

The trajectory of the projectile using by the kalman filter algorithm and the conventional least 
squares algorithm is shown in Fig6, The real trajectory of the projectile is also plotted in the Fig.7. 
It can be seen that the kalman filter algorithm is more accurate than the conventional least squares 
algorithm, The trajectory of the projectile obtained by the kalman filter algorithm is very close to 
the real trajectory.  

The direction error and the pitch error of the kalman filter algorithm and the conventional least 
square algorithm are shown as Fig.8 and Fig.9. It can be found that the direction error and the pitch 
error of the kalman filter algorithm are much less than the conventional least squares algorithm, 
From Fig.8 and Fig.9, It also can be seen that the kalman filter algorithm is more stability than the 
conventional least squares algorithm. 

 
Fig.7 Trajectory of both algorithms 

 
Fig.8 Direction error of both algorithms 
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Fig.9 Pitch error of both algorithms 

6.Conclusion 

An original method is presented in this paper, which attempts to make use of the kalman filtering 
algorithm and maintain accuracy in position, attitude and velocity estimation for a fast moving 
projectile, the velocity and the pose (position and attitude) could also be obtained, then the 
simulation are presented and compared with the conventional least square method. The simulation 
result showed that the kalman filter algorithm is more accurate and stability than the conventional 
least squares algorithm, meanwhile the trajectory of the projectile obtained by the kalman filter 
algorithm is very close to the real trajectory. 
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