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Abstract. This paper primarily discusses the linear quadratic optimal control problem for
discrete-time stochastic sys- tems with indefinite control weights and constraint and Markovian
jumps. We use the Karush-Kuhn-tucker (KKT) theorem basically in this paper. It is testified that the
well- posedness and the attainability are equivalent about the stochastic linear quadratic optimal
control problem with Markovian jumps. Furthermore, the solution of the generalized difference
Riccati equation (GDRE) can indicate an optimal control.

Introduction

In this paper, we focus our attention on the finite horizon indefinite stochastic linear quadratic
control with Markovian jumps and terminal inequality constraint. There are homologous constraints

in H. filtering problems [1,2]. The summary of this paper is arranged as follows. In Section 2,
we render some definitions and preliminaries. Section 3 elaborates and proves our primary theorems.
Here a necessary condition about the existence of linear optimal state feedback control with
Markovian jumps is obtained. Furthermore, it is illustrated that the solvability of the GDRE, the
attainability and the well-posedness of the linear quadratic problem are all equivalent.

tr(A)

We shall find that it is convenient to apply the following marks in this paper. indicates

the trace of a square matrix A; A represents the transpose of a matrix A; A> 0( A 20) implies that
A is positive definite (positive semi-definite) symmetric matrix; E[X] signifies the mathematical

.
expectation of a arbitrary variable X; A represents the Moore-Penrose generalized inverse matrix

mxn

|
of a matrix A; R is the |-dimensional Eulerian space with the usual 2-norm ”” R means the
vector space of all M*N matrices with entries in R ;| represents the identity matrix with suitable

dimension; N, =1082--t-1) and N:{l,m,N}'

Definitions and preliminaries

Given a probability space (Q,F,P), think about the discrete-time stochastic system with
Markovian jumps:

(2.9

x(1+1) = Ay, XM + B,y MU +C 0y DX @0 )+ D,y U)o 1) + @(1),1 € N
Du XM +b, X, M+ +h, X, (M =&,
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where X© =X € R js the given initial state, X0 € R ang YD € R are. severally, the

system state and controlled input of the system,g(l) is a time-varying Markov chain with the
transition probability matrix

P()=(p, ). p, M =P@E1+1) = o) =1). A,y (). C,(, MR Byyy 1) Dy M e R™" N

matrix valued functions of appropriate dimensions. Without loss of generality, we suppose that

@O @O e scalar arbitrary variables and independent of the Markov chain 9¢) . The initial
value 000) = 6, is also independent of the noise o)< N-) . In addition,

w O.@ 0.0 satisfy the following
Elgp 01=Elg ()] =E[o()]=0, E[(a)x(|))2] =E[(" (|))2] =1,E[o(l) gp )] =V (),
Elep e 1= ,OXU(|), Elo(l) o' D] = E[w(l) ¢» (] =0.

We indicate F' the o- algebra generated by (@ ). 1), @), that is to
say, F={olo® @ Oob):leN} u©

L=umeR™ED. u(l 2<+oo]}
U ‘ { R Z ()‘ . gi is F- measurable square integrable stochastic process,
that is E[‘fi‘] = LetN””:(bii)rxn’§=(§1'§2""’§r)

asNX(T) <&, , Where b” is constant. N has row full rank.
To make the expressions tighter, we apply some signs that will be used later. Let P indicates a
collection of symmetric matrices which includes the time | and the mode of operation . that

s, P={P,y®eS e N, 00N} PO=IP,0O.P,O~ POl o P ang
i N, gy W, (LP(+D)= > p,OP,0+D.

We deem the following cost function connected with the system (2.1).

J(Xo-U(0),-++,u(T —1)) :ZE[(X'(I)QH(,)a)x(I)+u'(l) Ruo, DU +Xx (M S 0, (M1 (2.2)

N, |
whereQH(')() SW’and Rf’(”( )are symmetric matrices with suitable dimension, which are
possible indefinite.

is part of the admissible control set

" afterwards the constraint in (2.1) can be indicated

V(XO): inf J(XO,U(O),"',U(T—]_))_
Defining as below u(0),+-u(T-1)
In the continuation, we study the linear quadratic problem for the systems (2.1)-(2.3), in other

words, seeking a control to minimize‘](XO’u(O)""'u(T _1)). First of all, we particularize some
helpful definitions and lemmas that are indispensable to research our main results.

Definition 2.1 If VXo) >~ for any XO,systems (2.1)-(2.3) are called well-posed.
Definition 2.2 If there exists an admissible control U< U.(T=D " gion that

V%o = I (Xor U (0 UL (T =D ey systems (2.1)-(2.3) are deemed to be attainable,

U. ), uy.(T-1)

is called an optimal control.
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If a linear feedback control is optimal for the linear quadratic problem (2.1)-(2.3), like that it

u(h) = Ky 001 € N

must be optimal linear feedback control of the listed below form

where Kﬁ(”(l) IS matrix-valued function.
MP(mathematical programming)

min ()
S.tl{g(x)so
h(x) =0
where 9(x) = (g, (), g, (x)),h(x) = (h, (%), h, ().

There are two definitions, i.e. Regularity condition and Regular point, in [3].
Lemma 2. 3 (KKT Theorem)[3] In MP above, suppose that the objective function f and the

g= (gli' : '1g p)’h = (h]_!' : '1hq)'

constraint functions are continuously differentiable at a

point X 1£X is a local minimum that satisfies some regularity conditions, then there exist a

vector 220 in R andavector # in R called KKT multipliers, such that
{Vx LX A 1) =0
A9(x)=0 (2.4)
where the Lagrangian function LA ) = 100+ A 9+ fh().
Main results under state feedback control
Theorem 3.1 If the linear quadratic optimal control problem (2.1)-(2.3) is attainable on the basis

of U0 = Ky DX w. M. x. ()

At the same time, the regular point is a veritable optimal

1
solution of problem (2.1)-(2.3), afterwards there are solutions (P(), 1) with O<ueR.TeN,
on the following GDRE

pP.()= A-(l)wi(l,P(l +1))A(')+C;(')l//i (I, P +1))Ci(|)+Qi(|)— H.OG OH,®0
H.)=B, 0178 (Aa( +1))A(|)+pXu Di(l)l//i(l,P(I +1))C, ()
G.O=R0O+B,Ow (.PA+))B,0)+ D, Oy (,.PI+)) D, =01e N; 3.1)
P, (M-S]
(NN
Altr (X (TN N)~tr(M)] =0, M = E[¢ £ ]
Moreover,

u.(= [_G;(I)(I) H H(I)(I) +Y 9(|)(|) _G;(I)(I)Ge(l)(l)Y e(l)(l)]x(l)’Y e(l)(l) € Rmxn'l € NT'

V(X)) = 2V Dy (L, P( + )]+ X, P, (0 X, - r(M).

along with

proof We know X1 =EXMXMOI ;g 4l =K DX e any "N+ The finear
quadratic problem (2.1)-(2.3) can be replaced by the following optimization, which is can be
proved.
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min 2 lQ,, 0+ K O Ryp O K o (X O+ [SX(T)]

K(0),K(T-1) 1=0

XA+ =30, P, OLAG XD Ay ®+C oy OXDC )+ By 0 K iy XD K 1) By
+ D9(|)(I) Ka(l)(l)x(l) Kle(l)(l) DI9(|)(I)+A9(|)(I)X(I) KL‘)(I)(I) Bleu)(l) + BH(I)(I) Ke(n(l)x(l) ALQ(I)(I)
+p™'D,, WKy OXDCy, 0+ p™C, OXDK 1 Dy M4V 5y )

X (0) = E[x(0) X (0)] = X, X, ,
tr[X(T) N NI<trM, M =E[¢ £]

Apparently, the problem (3.2) is a MP problem as follows
XK gy (]

(3.2)

g[X(M)1<0,l e N,
where
FIX (), K ) (D] =|sztr[(Qg(l)(l) + Kooy M Roey M K gy )X D]+ tr[SX(T)]
AEX (). K 0y M= 21, P, OLA DX D) Ay 1+ C oy DX DC 0y D+ By 1 K 0y XM K (1 By
+ Doy M K oty OX D K 0y O Dy O+ Ay XA K 0y ) By M + By M K oy DX A) Ay
+p™D,, WK OXMC, O+ p™C, OXN Ky 0 Dy M4V ) ()

g[X (M =tr[X(T)N N]-M.
By means of KKT Theorem, the Lagrangian function is defined as following

L (X0, K1), P +1), 1) = F[X (1), K, (D] + TZ%,tr{P,- (H+DIhIX M), K 5y (DI = XA+ DI} + 29[ X (T)]

” {h[x 1), Ky (N]=0

1
where the matrices (0, P, P(T) gp¢ Lagrangian multipliers and # € R "
Furthermore, the above result is apparent.

o oL oL
oxX() oK, oX(T)
By means qf caculating, we know that ‘P(I) and 4 satisfy the equation as follows
[RO)+B, My (.P1+D) B, M)+ D,y (.P1+1) D,MIK, ()
=-B.0Oy (.PI+D) AD- oD Oy, (L,PI+1)C, (), (33)
Pi(l)=C(l)¢//(lP D)C,0+K,OIR,M+B,( gz/IP(I D)B,0+ D,y (,PI+1)D,MIK, ()
S AOY (LPA+D)BM+p DO (.PA+D)C,01+Q.0+ ANy, (.PI+1) A()
P(T)=S+uN N (3.4)

By means of Lemma in [6], we know that the equation (3.3) has a solution Ke(” if and only
if
G G M H. = Hoo Koy 1)=-C, O0H.,0+Y 1, (0=, 0G4 OY

Where,
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G.=R,0)+B,0Ow,0.P1+D) B,0)+ D,y (.P1+1) D, (),
H.0= B0, 0.P0+0) AD+ 5D Oy, (.PA+DIC,M.Y,, D e R™"

We substitute the above results (3.5) into (3.4) and get as follows
P.()= A(l)l//i(l,F’(l +1))A(I)+C}(l)l,ui (I,PA+1)C,H+Q.(1) - H.OG OH,O
H.0= B;(l)l//i (1, Pd +1))A(l)+pXu D Oy (.PA+D)C, (1)

GhH=R,WM+ B;(I)l//i (LPU+D)) B, 1)+ D;(I)(//i (LPU+))D,)>0,1e N,
[P, (N)-s]

(3.5)

tr(N N) (3.6)

In this circumstances, we can suppose P"(H(D is symmetric. Otherwise, we adopt
~ Pla(l)(l)Jr Pa(l)(l)
F)a(l)(l)= 2 '

Now we combine the following equality
EE[x'(I Dy (LPA+)x( +2) = X () P, ()x()] = ELIX (T) Py, (MX(T) =X, Py, O X!
with (2.2) and (3.6), here o) =1 and we get
3(X,,u(0),+-,u(T —1))=2E[x'(l)Qi(l)x(l)+u'(l) R Ou(4x (1 + Dy (1, PA+D)x(1 +1)
=X OP,OXOI+EIX TXS, ~ Py MNXT)+ X, Py (O)X,]
=2E[x'(l)(Qi(l)— PO+ AWy (LPA+)) AN +C, Oy, (.PI+D)C, )X
£2X A OY,0.PI+D) B0+ p*C Oy, 0.P0+D) DO +y OR, O+ B0y, 0.P0+1)B,0)
+ DOy (L.PA+D) D, (I))u(l)]+2E[w'(l)y/i (L.P+D)o0]+EIX TXS 5~ Py TNXT)+ X, Py O X1

We gain as follows after the completion of square

(% 100 -0) = S EL(U()+G (1) H i (1)X(1)) G, OGO + G ) H, Ox)
=S (O, 0P+ D)1+ EIX TS, ~ Py, TIXTT+ X, Py, 0,

I
Here,Gi(I)'I €N+ need to be attested. We suppose that there exists a G5(')()With a

negative eigenvalue 4 . Let V. become the unitary eigenvector about 4, then it purports
that V4V = Land Goy OV, =2V, For
any5 #0, and ordering o(1) =1, let us assume that a control sequence is provided by

~G. M H,MHx(),1 =k
5‘/17\,1—(3:0) H.(OxM),1 =k.

The corresponding cost as below

Gd) =
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3o TG -0)= S EU)+G ) H (X)) G OO + G, O H, Hx)]

+ Titr[\/i(l)wi (,P(+1)]+ E[x'U)(SeT —Py, M)XM)]+ X, Py, OX,

V) + 2V, Oy, (L PA D+ EX TS, - Py, MIXT+ X, Py O,

= N N(S|A
_.(é;L1| 2\/2) (;i()( |
—- 5"+ 2V Oy (L PO+ DI+ EIX XS, - Py, MXT+ X, Py O X,

When 6 =@ it makes I (XU (0), - U (T =1)) > —o0
attainability on the linear quadratic problem (2.1)-(2.3).

which is in contradiction with the

Through the above interpretation and (3.4), we can get the optimal value Vilxo) as follows
T-1 )

V. (X) =X, U. 0. (T -1) = Ztr[\/i(l)(/ji (L, P(I+1)]+ X, P, (0) ¥, — #tr(M).
1=0 0

The process of proof is complete.

In the ending, we will use the following result, which offers an equivalent relation between the
solvability of the GDRE and the well-posedness of the linear quadratic problem.

Theorem 3.2 The linear quadratic problem (2.1)-(2.3) is well-posed, hence there are solutions

(P, (.22

on the GDRE (3.1). On the contrary, if the GDRE (3.1) has solutions (PG(”(I)”U), then the
linear quadratic
problem (2.1)-(2.3) is well-posed. Furthermore, the optimal cost satisfies

T-1 .
V. (x) =2tV Oy (L, P +D)]+ X, Py, ©) X, Hr(M).

1=0 0
Proof Necessity part. Think about the following cost from Kto T

Wi () = inf  SEIXHQ,, XD +U 1) Ry u)+ X MS 5 XM
u(0),---u(T-1) 1=k T (3.7)
i W g (X)) W e, (X(M))

In the light of the optimal standard, is finite, and there is

m > k.

for any

W, (x(©)) W (x(K))

Owing to is finite, we could deduce that

T-1>k>0

is finite for any

T)= N.
Let k=T —1and Po 1)=54 4N By means of (2.1) and (3.7), we get as follows
W sy KT =)=t/ L, T=D P, (MI-EIX TS, ~ Py, (TWHX(T)]
=inf EXT-DQ,, , T-D+ Ay T -DPy 1) Ay -
+Copr T =DPy MC ey =XT =D +2X (T -D(A,; T -DPy By, (T -1
0 T=DCr T DPy M Dyry T ~DUT =D+ T -D(Ryr 5 T~

+ B'H(T—l) (T-1) P@T (T) Ba(T—l) T-D+ Dla(Tfl)(T -1) PgT (T) Da(T—l) (T =D)u( -1
Following Lemma in [6] to the above quadratic equation, we obtain a symmetric matrix
PorsT =D 56 betow
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W oy KT =)=t/ o, (T =D P, MI-EIX (XS, ~ Py MNXMI=EIX (T 1) Pyr ) (T ~Dx(T ~D)]
PH(T—l) T-D= QH(T,D (T-1)+ A;Q(T—l) T-1 PgT M AH(T—l) T-D+ CIH(T—l) (T-1) PgT (T)CG(T—l) T-1

- HI()(T p\t T )G;(T IR )Ha(T -1)

G o(T 1) 1) R{}(T -1) (T 1) + B{)(T -1) (T l) Pg (T) B{}(T -1) 1) + D;}(T—l) (T _1) PgT (T) D{}(T—l)(T _1) >0

H o(T-1) T-D= B{}(T—l) -1) P@w M A{}(T—l) T-1 +pXU D (T-1) PgT (T)CH(T—l) (T-1).

oT-1)
Obviously, the above form is GDRE (3.1) for | =T -1,

Fixing e(l):i, suppose that GDRE (3.1) possesses a set of solutions (P“')(I)’ﬂ) with

l=k,---, T -1
W/ (k) -t/ (0, (k. Pk + D)1= ELX (T)(S , = Py, MIX(T)] = EL (K) P, (K)x(
By means of (3. 7) we get
W (x(k-1) - Ztrl\/ Dy (P +1)]- E[x(T)(Se Pg. (MXM]

I=k-1

- |nf E[X (k 1)(Qg(k ) (k l) Aﬁ(k 1)(k 1) PH(k 1)(k 1) Aﬁ(k 1)(k 1)

u(k-1)
+Coopen K =D Py K=D C ey K=D)X(k =1+ 2 X (k=D Ae o K=D) P gy (K) B o, (k=1
+ 0" Copen K =D Py ) Dy K=u(k =1+ (k=D(R e o, k=)

* B;(k—l) (k-1) Pe(k) (k) Be(k—l) (k=1)+ D;(k—l) (k-1) Pe(k) (k) Da(k—l) (k ~)u(k ~1)].
Vo &=D

From Lemma in [6], it is evident that the finiteness of
following

P@(k—l)(k_l)on(k_l) (k-1) Po(k) (k) Aﬂ(k—l) (k-1 + C;(k—l)(k -1) P{)(k)(k) Cg(k—l) (k-1

+ Qg(k,l) (k-1)- H l9(k—l) (k-1 G;(k—l) (k-1 H O(k-1) (k-1)

H A(k-1) (k _1) = BIH(k—l) (k _1) Pe(k) (k) AH(k—l) (k _1) + pxu DH(k—l) (k _1) Pﬁ(k) (k) Cﬂ(kfl)(k _1)

Ga(k—l)(k -= Rﬁ(k—l) (k _1)+ Ba(m) (k-1 PH(k) (k) Ba(k—l) (k-1 + D;(k—l)(k -1) Pa(k)(k) De(k—l) (k-1)
GH(k—l)(k _1)G;(k—1)(k -1) H o(k-1) (k-1)- H o(k-1) (k-1 =0.

Furthermore,

W Ztrw IPI+1))]+E[X(T 89 PH X(T)]+X(k)P )X(K).

I=k-1

Sufficiency part. Let

L,(1.P)= A(l)l//i(l,P(l +1)) Ai(D- Pi(|)+C;(|)l//i(|,P(| +1))Ci(|)—Qi(|)
M. (LP) = A (,PA+D) B0+ p C, O (,PU+1) D, ()
N,(.P)=R.0)+ B0y, (.P1+1) B,()+ D,y (,P(+1) D, ().

We suppose Pé’l @y PQT (M)
{ L,(.P) Mi(l,P)}O

is equivalent to the

satisfy

M.(,P) N,(0,P) |~

_ T)<S+ N.
for 1=0LT =1 g Py, () “N
We have known the following
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J(X,:u(0), -, u(T 1)) =TZ%,E[x(l)Qi(l)X(|)+u'(|)Ri(l)U(l))+xv(T)S€TX(T)]

 E[ ( JQ -P,0)+ AW (.PA+1) A 1+C, Oy, (.PI+D)C, X

=0

2x(l)(A‘(I)1)y(I P(1+2)) B, (1) pXUC I)w (I,P(+2)) D, ) (R, M)+ Bi(l)w(l,P(I+1))B.(I)
+D (//(I P(1+1) ]+ZE[V I)p//(l P(1+1) ]+E[X(T SH Pé’ M)x(T) +X0P9 0) X,J-

We can reach the following from Extended Schur's Lemma in [5].
T-1 ,

J(X,:u(0),---,u(T -1)) 2 Ztr[\/ i (I)()yi (L P +D))]+ X, PH (0) x, — wtr(M).
1=0 0

That is to say,

V(%0 = IV Oy, (PO + D)1+ X, Py (0) X, — atr(M),

which indicates that the linear quadratic problem (2.1) - (2.3) is well-posed.
The next content will be the main result about this section.

Theorem 3.3 The nether conclusions are equivalent:

(1) The linear quadratic problem (2.1) - (2.3) is attainable.

(i) The linear quadratic problem (2.1) - (2.3) is well-posed.

(i11) The GDRE (3.1) is solvable.

Moreover, the feedback control law is accomplished by

u®) =-[R;(N+Bi(1)y (1, PU+1) Bi(1)+Di()y (1, PA+1)) Di(N]
[B;(I)Wi(I,P(I +1))Ai(|)+loXu Di(I)Wi(I’ P +1)C,(OIxD),
here, P‘90 ) PQT M are solutions on the GDRE (3.1), at the same time, <N,

Proof By Theorem 3.2, we can educe that (ii) is equivalent to (iii). Next our assignment is to
testify that (i) is equivalent to (iii). However, from Theorem 3.1, we only need to attest (iii)= (i).

(Pg, @ P, M.a)

-+

Assume the GDRE (3.1) has a series of solutions . We can prove the

following
equation on the basis of the Theorem 3.1
3(XpU(0),-+u(T -1) ZElx )Q,(x)+y MR, Mu® +x M, x(T)]

:2 MQ,MXM+y R, My ()+xu+1>W,(|,P<I+1»xu+1>—x(I)p,(l)x(l)]+E[x'cr>(s€r—Pgr(r» )
%P, O] = ZE[( u()+G () H; ()x(1) GO0 +G; T H,Ox0)]

+ztrw W, (PUD+EX (S, ~Py MM+ X, P, O X
Hence, the optimal value

V(%) = IV, O, (PO + D)1+ X, Py (0) X, — ar(M),

and the feedbacku(l) =-G, OO H, Ox().
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