2015 2nd International Conference on Intelligent Computing and Cognitive Informatics (ICICCI 2015)

MRI Image Segmentation Based on a GPU Shortest Path Algorithm

Jie Wang?, Weihao Chen®

School of Software Technology, Dalian University of Technology, Dalian, China
“wangjie1003@163.com, endeavour35@163.com

Abstract—Dijkstra algorithm can be adopted to distinguish
different parts of boundaries in medical image segmentation
problem, which can be a reference for further segmentation
operation. However, classical Dijkstra algorithm can hardly
adapt to real time image segmentation problem owing to its
exponentially O(n?) computing complexity, especially for the
increasing number of nodes. In this paper, we designed and
implemented a parallel shortest path algorithm accelerated by
GPU for medical image segmentation problem. A dynamic
relax approach is presented to optimize classical Dijkstra
algorithm. Therefore, the new parallel Dijkstra algorithm can
be easily applied to CUDA parallel framework without
concerning about GPU hardware and CUDA optimize details.
Two experiments have been conducted to evaluate the
algorithm performance. The results show that our new
Dijkstra algorithm can get 8 speedup for 4096 points compared
with the classical Dijkstra algorithm. Besides, an impressing
result with two speed up for 128*128 points problems is
demonstrated in parallel Dijkstra compared with parallel
Moore. In conclusion, the new parallel Dijkstra algorithm can
significantly improve the real-time performance of image
segmentation.

Keywords- CUDA,; shortest path algorithm; medical image
segmentation

. INTRODUCTION

Based on magnetic resonance phenomenon, magnetic
resonance imaging (MRI) gets electromagnetic signals from
human body, which filters to obtain useful information and
rebuild image for each organ of human body. Modern
medical image segmentation is a technology which
decomposes image into specific and different nature areas,
and extracts interested target areas. Medical image
segmentation [1] is an important research direction of
medical image processing, the basis of measuring lesion
region extraction, specific organization and implementation,
3d reconstruction result of medical image segmentation,
which has attracted widespread attention.

The shortest path for segmentation is the most commonly
used method in image segmentation. Dijkstra algorithm [2] is
a classic algorithm in SSSP (Single Source Shortest Paths)
problem, which can efficiently calculate the figure of all
nodes of the shortest path to the Source point. Medical image
segmentation problem based on Dijkstra algorithm can be
used to distinguish different adjacent parts of the boundary in
the figure, and provide the basis for further segmentation
operation. These images can be specified to isolate the area
of organs and tissues, so as to help professional medical
workers for further analysis. However, the time complexity
of Dijkstra algorithm is O(n?). In practice, computation time

© 2015. The authors - Published by Atlantis Press

will increase exponentially along with the increase of the
node size. Parallelizing the existing serial algorithm
gradually becomes the hot spot of research, with the growth
of computing power and programmability of graphics
processor GPU.

The pre-segmentation image is usually abstracted as a
connected graph in medical image segmentation problem,
whose pixels are abstracted as nodes, edges are abstracted as
the connection between adjacent pixels. Due to more nodes,
how we find the shortest path between nodes to speed up the
search becomes the key of this problem.

The main research of image segmentation problem at
home and abroad is how to design more efficient strategy of
priority queue or reduce the search space [3, 4]. Such as Iv
jie [5] etc. select efficient sorting algorithm to improve the
speed of path searching. They optimize the process of
Dijkstra algorithm by sequencing the cycle of temporary
node binary heap sort of shortest path set [6], and reduce the
time complexity of searching process to O (nlogn). However,
the key of the above algorithms is not comprehensive, which
are relatively single and should be further improving the
precision of the searching. This algorithm is especially
poorly applied in medical image segmentation field. So using
a large number of threads in parallel execution of optimal
performance based on the existing parallel shortest path
algorithm can effectively improve the efficiency of the
shortest path algorithm.

Il. PARALLEL SHORTEST PATH ALGORITHM

Classic serial SSSP algorithm including the Dijkstra
algorithm, Moore algorithm, etc. The study of the
parallelization of the classic algorithms can significantly
improve the efficiency of searching. The paper [7] proposes
parallel Moore SSSP algorithm which based on the storage
of source node to the nodes of the array D, queue elements of
an array Q, parallelize the process of search and accelerate
the algorithm to obtain the ideal results. There are also some
other improved parallelization strategies for the optimization
of the shortest path algorithm [8-11].

In medical image segmentation problem, the abstract of
each node in the undirected graph leads to the small number
of sides, narrow weight range and nonnegative integer. So
the current image segmentation uses Dijkstra algorithm or
the optimization algorithm based on Dijkstra for the
calculation of the shortest path.

A. Algorithm of Overall Process

The phase of file data reading is completed in the CPU,
data in a file is stored in n * n matrix way, there is also a
TAB between each elements. Initializing an array of data

2015 2nd International Conference on Intelligent Computing and Cognitive Informatics (ICICCI 2015)

transformation can improve the probability of a cache hit and
improve the efficiency of the 1/O reading when every time
the GPU reads a row.

Kernel function is the parallel part that implements on the
GPU, whose primary mission is updating data of nodes,
searching nodes and storing functions of the shortest path.
Data will be stored by n * n matrix and return to the host side
after performing the kernel, the allocated storage space on
the GPU will be released at the same time.

B. The Key Variable Initialized

It is necessary to initialize the data and deliver them to
the GPU before parallel computing. Data structure directly
affects the work process, memory access patterns and the
system performance. GPU does not support allocating device
memory dynamically and using some dynamic data
structures. So the algorithm uses the linear array structure to
store the nodes information. Table | lists the types and
functions of some key variables used in algorithm
implementation process.

The concrete implementation of this kernel is closely
related to the entire program parallelization strategies. Figure
1 shows the program of parallel implementation process,
which includes the figure data inputs, adjacency matrix data
for an array of data transformation, data transpose matrix and
data from CPU to the GPU global memory copy operation,
etc. After completion of copies of data, all the kernel
functions will copy data from the global memory to the
corresponding thread private store (including block within
the shared memory and registers), then all threads will
execute concurrently.

After the execution, kernel function will finish the results
that copy data from private memory of the threads to the
GPU memory. Finally, the program will run over copy
function at CPU side to copy the results of GPU memory
back to CPU and write data to the output file.

Kernel function algorithm for pseudo code is shown
below:

Algorithm 1: The main body of the Kernel

TABLE I. KEY VARIABLES AND FUNCTIONS 1. Inmallz.e(dlst,preNodeideude);
2: Relax(dist,preNode,decide);
Name Type Function 3: for i=0 to matrixSize do
) . * il o
S et | Number of nodes in figure decide the 4: alldist[source*matrixSize+i]=dist[i];
array size, which defined by the user 5: source+=BLOCK_NUM*THREAD_NUM,;
BLOCK_NUM constant User specify the number and size of the
THREAD_NUM blocks and threads Algorithm 2: Initialize(dist, preNode, decide)
cost array Store the adjacency matrix - for i = 0 to matrixSize do
. Store the result, and say the adjacency distlil = cost[source+i*matrixSizel:
alldist array matrix of the shortest path [[I

Due to directly access the host memory of GPU is
impossible, you need to allocate memory on the GPU
equipment, and copy the data from GPU memory to CPU
memory. We can define the structure to unify the
management of the GPU memory.

C. The Kernel Function

The overall design thought of this program is avoiding
multiple calls of the kernel function which causes additional
threads for 1/0. So we should design the kernel function to
avoid the correlation between processes and assign disposal
tasks to each kernel. After that all the kernel functions will
perform at the same time and make one-off copies at the end
of the completion of kernels, thus such ability can minimize
the cost of fetching.

decided[i] = 0;

1
2
3: preNode[i] = source;
4
5:decided[source] = 1;

Algorithm 3: Relax (dist, preNode, decide)
. for i=0 to matrixSize do
for j=0 to matrixSize do
find the value of the smallest element;
Nd=low;
for w=0 to matrixSize do
if(decided[w]==0&&dist[w]>(dist[Nd]+
cost[Nd+w*matrixSize]))
dist[w] = dist[Nd] + cost[Nd+w*matrixSize];
preNode[w] = Nd;
0: end if

BoeoNourwNR

Kernel(GPU)

: o |||
Preproce y OFY data from result

' ata from _)

-ssing private :
e [menon <L P | P

to private -
(CPU) sore Remel memory ||| (cpu)

function

Figure 1. Parallel implementation process function

© 2015. The authors - Published by Atlantis Press

Through continuous updating and relaxing, algorithm can
find out the shortest distance to the first element in one
dimensional array, the shortest path value is assigned to all
dist matrix after the execution of elements of matrix Size.
Finally, all the results will be written back to the text file in
the host by the write file function.

I1l. APPLICATION AND COMPARISON

A. Test Platform and Data Sets

This paper designs the parallel algorithm for the shortest
path to accelerate the test environment to run on Windows 7

2015 2nd International Conference on Intelligent Computing and Cognitive Informatics (ICICCI 2015)

system, choose NVIDIA GeForce GTX460 GPU. GTX460
computing capacity of 2.1, memory 1 G, bit width 256 - bit
memory frequency of 1848.00 MHz, a total of 336 CUDA
Cores, 1.40 GHz GPU frequency. The latest GTX460 Fermi
architecture allows the maximum number of active threads in
a block of 1024, so using the maximum 512 threads in each
block for the sake of backward compatibility.

As the process of MRI image abstraction for connected
graph is more complex, especially the design of the cost
function, which involves professional medical knowledge,
this paper tests the data according to document [12]
simulation. The input data using adjacency matrix which
store in text file, we need to input data that capture into
different size.

B. The Comparision of Serial and Parallel Algorithm

Serial algorithms and GPU parallel algorithms speedup
comparison is shown in figure 2. Because the kernel function
of parallel algorithms costs a lot of fetch operations, which
increase the additional time consumption of 1/O operations.
Meanwhile the process of copying the result back to the
memory is more time-consuming. Given the cost of using the
GPU parallel acceleration is much higher than the pure CPU,
S0 it’s not suitable to use GPU parallel calculation of the
shortest path when the amount of nodes are small.

180
160
140
120
100
80
60
40
20

0
128 256 512 1024 2048 4096

Serial Dijkstra Heap Sorting

GPU Parallelization

Figure 2. Serial algorithms and GPU parallel algorithms consuming
comparison

The performance of parallel algorithm based on GPU is
well when junction points reach 256, while the number of
nodes is around 1000, the calculation efficiency of the
parallel algorithm based on GPU shows nearly three times
higher than that of serial algorithm. As the junction points
gradually increase, the acceleration of parallel algorithms
obtains an increase gradually for 7 ~ 8, and the gap is
widening.

C. The Comparision of Moore and the New Algorithm

Parallel shortest path algorithm based on GPU has
excellent speedup compared with other parallel algorithm.
Moore parallelization and Dijkstra parallelization speedup

© 2015. The authors - Published by Atlantis Press

comparison is shown in figure 3. GPU acceleration parallel
shortest path algorithm is nearly 1.5 times higher than
average GPU Moore algorithm when nodes are under 20000.
As nodes continue to increase, the speed of the acceleration
of GPU Moore algorithm will increase faster than the
proposed algorithm, they will increase gradually close, even
GPU Moore algorithm increase slightly more than the
algorithm proposed in this paper.

16
14.7
14
- lz-'$)3'6
_/"11.5
10 9 s
8 % . &
6 -
4 31 . 35_
2 S Wit
0 63 04
o) © v 3 D © 4% ™ D
v \e) N v 2 Y) N ©
WA S @
GPU Parallelization GPU Moore

Figure 3. Moore parallelization and Dijkstra parallelization speedup
comparison

It can be seen from the analysis of implementation of the
process that the algorithm which the paper puts forward can
reduce the kernel function calls. Whose computing
performance is excellent than GPU Moore algorithm of
hierarchical parallel strategy, so the speed is better in the test.
When the junction is more than 20000 points, fewer kernel
calls has resulted in excessive internal implementation
process. Because of operating too much node data, the kernel
functions need extra time to access the shared memory, read
data you need to own private storage, and increase the
running time of the kernel function. However, GPU Moore
algorithm of hierarchical kernel calls can ensure the efficient
operation of the kernel function in each level task, which can
make up the cost of overheads caused by multiple calls to the
kernel function.

We can draw the following conclusions from the above
experiment that when the node size continues to increase, the
GPU Moore algorithm for acceleration ratio will increase at
a speed of more than the design algorithm until a threshold in
theory. Thus we will choose GPU Moore algorithm for our
acceleration when the junction points are more than 20000.
The general image for MRI image segmentation problem is
128* 128 pixels which contains 16384 nodes when
converted into matrix, so a design of parallel shortest path
algorithm of this paper can significantly improve the
computational efficiency.

IVV. CONCLUSION AND FUTURE WORK

We design and realize a kind of GPU acceleration
parallel shortest path algorithm in this paper, which use
CUDA framework implementations of NVIDIA and

2015 2nd International Conference on Intelligent Computing and Cognitive Informatics (ICICCI 2015)

compatible with NVIDIA whole series of graphics. User
needs specify the number of block and thread calls according
to the nodes, memory for allocation. The computational
algorithm is able to complete work calls automatically. This
algorithm use CUDA to block the details of the hardware to
simplify the general difficulty of GPU. At the same time,
parallel shortest path algorithm based on GPU has a speed
ratio about 8 times compares with the traditional serial
algorithm, which can improve the efficiency of image
segmentation significantly.

There are also some shortcomings in the parallel shortest
path algorithm which the paper has discussed. The
acceleration effect of this parallel algorithm is worst than
other parallel algorithms in dealing with the data node size
20000 and above. Because of the limitation of hardware
conditions in theory, parallel shortest path algorithm based
on GPU acceleration will not always increase, but will close
to a threshold of the optimal speed ratio that the algorithm
can achieve and stabilize. Although test speedup of the
parallel shortest path algorithm based on GPU in MRI image
segmentation problem is good, it does not achieve the
optimal speed ratio because of the limitation of problem size.
In order to apply the algorithm on more practical problems,
we must find the threshold value corresponding to the
problem size and improve the related optimization. This will
be the focus of future work.

ACKNOWLEDGMENT

The authors gratefully acknowledge the support from
National Natural Science Foundation of China (61472100)
and the central university Fundamental Research
(DUT14QY32).

© 2015. The authors - Published by Atlantis Press

[1]

[2]

31

[41

[5]
(6]
[71

(8]

[°]

[10]

[11]

[12]

REFERENCES

Zhang Dong, Zeng Wenhua. An Improved MRI Brain Segmentation
Algorithm Based on AntPart [C]. //2nd International Conference on
Computer and Automation Engineering. Singapore, Singapore: IEEE,
2010:533-535

E. W. DIJKSTRA. A Note on Two Problems in Connexion with
Graphs [M]. Numerische Mathematik ,1959: 269--271

Wang Shaohua, Zhong Ershun, Zhang Xiaohu, et al. The shortest path
algorithm analysis technology to accelerate the search space.
Geospatial Information [J], 2013, 11(06) : 62-65

Song Qing and Wang Xiaofan. Review the shortest path algorithm to
accelerate technology research [J]. Journal of University of Electronic
Science and Technology, 2012, 41(2) : 176-184

Lv Jie, Xiong Chunrong. Interactive medical image segmentation
algorithm simulation [J]. Computer Simulation, 2010,27(12):262-266

Dang Jianwu, Du Xiaogang, etc. Pairing heap interactive medical image
segmentation algorithm [J]. Computer Science, 2009, 36(11): 290-292

Guo Zhaozhong, Wang Wei, Zhou Gang, et al. Single- source shortest
path algorithm design and implementation of GPU[J]. Computer
Engineering, 2012,38(2) : 42-44

Hector Ortega-Arranz, Yuri Torres. A New GPU-based Approach to
the Shortest Path Problem [C]. //Proceedings of HPCS’2013. Helsinki,
Finland: IEEE, 2013:505-511

Pawan Harish, P. J. Narayanan. Accelerating Large Graph Algorithms
on the GPU Using CUDAIC]. // Proceedings of HiPC’2007. Goa,
India: Springer, 2007: 197-208

Micikevicius P. General Parallel Computation on Commodity
Graphics Hardware: Case Study with the All-Pairs Shortest Paths
Problem[C] // Proceedings of PDPTA'04. Las Vegas, NV, United
states: CSREA Press: 2004: 1359-1365

U. Meyer, P. Sanders. A -stepping: a parallelizable shortest path
algorithm [J]. Journal of Algorithms, 2003. 49(1): 114-152

Moore E F. The Shortest Path Through a Maze[C]// Proceedings of
the International Symposium on Theory of Switching. Cambridge,
UK: Harvard University Press, 1959: 285-292

