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Abstract—Dijkstra algorithm can be adopted to distinguish 
different parts of boundaries in medical image segmentation 
problem, which can be a reference for further segmentation 
operation. However, classical Dijkstra algorithm can hardly 
adapt to real time image segmentation problem owing to its 
exponentially O(n2) computing complexity, especially for the 
increasing number of nodes. In this paper, we designed and 
implemented a parallel shortest path algorithm accelerated by 
GPU for medical image segmentation problem. A dynamic 
relax approach is presented to optimize classical Dijkstra 
algorithm. Therefore, the new parallel Dijkstra algorithm can 
be easily applied to CUDA parallel framework without 
concerning about GPU hardware and CUDA optimize details. 
Two experiments have been conducted to evaluate the 
algorithm performance. The results show that our new 
Dijkstra algorithm can get 8 speedup for 4096 points compared 
with the classical Dijkstra algorithm. Besides, an impressing 
result with two speed up for 128*128 points problems is 
demonstrated in parallel Dijkstra compared with parallel 
Moore. In conclusion, the new parallel Dijkstra algorithm can 
significantly improve the real-time performance of image 
segmentation. 

Keywords- CUDA; shortest path algorithm; medical image 
segmentation 

I. INTRODUCTION 
Based on magnetic resonance phenomenon, magnetic 

resonance imaging (MRI) gets electromagnetic signals from 
human body, which filters to obtain useful information and 
rebuild image for each organ of human body. Modern 
medical image segmentation is a technology which 
decomposes image into specific and different nature areas, 
and extracts interested target areas. Medical image 
segmentation [1] is an important research direction of 
medical image processing, the basis of measuring lesion 
region extraction, specific organization and implementation, 
3d reconstruction result of medical image segmentation, 
which has attracted widespread attention. 

The shortest path for segmentation is the most commonly 
used method in image segmentation. Dijkstra algorithm [2] is 
a classic algorithm in SSSP (Single Source Shortest Paths) 
problem, which can efficiently calculate the figure of all 
nodes of the shortest path to the Source point. Medical image 
segmentation problem based on Dijkstra algorithm can be 
used to distinguish different adjacent parts of the boundary in 
the figure, and provide the basis for further segmentation 
operation. These images can be specified to isolate the area 
of organs and tissues, so as to help professional medical 
workers for further analysis. However, the time complexity 
of Dijkstra algorithm is O(n2). In practice, computation time 

will increase exponentially along with the increase of the 
node size. Parallelizing the existing serial algorithm 
gradually becomes the hot spot of research, with the growth 
of computing power and programmability of graphics 
processor GPU. 

The pre-segmentation image is usually abstracted as a 
connected graph in medical image segmentation problem, 
whose pixels are abstracted as nodes, edges are abstracted as 
the connection between adjacent pixels. Due to more nodes, 
how we find the shortest path between nodes to speed up the 
search becomes the key of this problem. 

The main research of image segmentation problem at 
home and abroad is how to design more efficient strategy of 
priority queue or reduce the search space [3, 4]. Such as lv 
jie [5] etc. select efficient sorting algorithm to improve the 
speed of path searching. They optimize the process of 
Dijkstra algorithm by sequencing the cycle of temporary 
node binary heap sort of shortest path set [6], and reduce the 
time complexity of searching process to O (nlogn). However, 
the key of the above algorithms is not comprehensive, which 
are relatively single and should be further improving the 
precision of the searching. This algorithm is especially 
poorly applied in medical image segmentation field. So using 
a large number of threads in parallel execution of optimal 
performance based on the existing parallel shortest path 
algorithm can effectively improve the efficiency of the 
shortest path algorithm. 

II. PARALLEL SHORTEST PATH ALGORITHM 
Classic serial SSSP algorithm including the Dijkstra 

algorithm, Moore algorithm, etc. The study of the 
parallelization of the classic algorithms can significantly 
improve the efficiency of searching. The paper [7] proposes 
parallel Moore SSSP algorithm which based on the storage 
of source node to the nodes of the array D, queue elements of 
an array Q, parallelize the process of search and accelerate 
the algorithm to obtain the ideal results. There are also some 
other improved parallelization strategies for the optimization 
of the shortest path algorithm [8-11]. 

In medical image segmentation problem, the abstract of 
each node in the undirected graph leads to the small number 
of sides, narrow weight range and nonnegative integer. So 
the current image segmentation uses Dijkstra algorithm or 
the optimization algorithm based on Dijkstra for the 
calculation of the shortest path. 

A. Algorithm of Overall Process 
The phase of file data reading is completed in the CPU, 

data in a file is stored in n * n matrix way, there is also a 
TAB between each elements. Initializing an array of data 
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transformation can improve the probability of a cache hit and 
improve the efficiency of the I/O reading when every time 
the GPU reads a row. 

Kernel function is the parallel part that implements on the 
GPU, whose primary mission is updating data of nodes, 
searching nodes and storing functions of the shortest path. 
Data will be stored by n * n matrix and return to the host side 
after performing the kernel, the allocated storage space on 
the GPU will be released at the same time. 

B. The Key Variable Initialized 
It is necessary to initialize the data and deliver them to 

the GPU before parallel computing. Data structure directly 
affects the work process, memory access patterns and the 
system performance. GPU does not support allocating device 
memory dynamically and using some dynamic data 
structures. So the algorithm uses the linear array structure to 
store the nodes information. Table I lists the types and 
functions of some key variables used in algorithm 
implementation process. 

TABLE I.  KEY VARIABLES AND FUNCTIONS 

Name Type Function 

matrixSize constant Number of nodes in figure decide the 
array size, which defined by the user 

BLOCK_NUM 
THREAD_NUM constant User specify the number and size of the 

blocks and threads 
cost array Store the adjacency matrix 

alldist array Store the result, and say the adjacency 
matrix of the shortest path 

 
Due to directly access the host memory of GPU is 

impossible, you need to allocate memory on the GPU 
equipment, and copy the data from GPU memory to CPU 
memory. We can define the structure to unify the 
management of the GPU memory. 

C. The Kernel Function 
The overall design thought of this program is avoiding 

multiple calls of the kernel function which causes additional 
threads for I/O. So we should design the kernel function to 
avoid the correlation between processes and assign disposal 
tasks to each kernel. After that all the kernel functions will 
perform at the same time and make one-off copies at the end 
of the completion of kernels, thus such ability can minimize 
the cost of fetching. 

 
Figure 1.  Parallel implementation process function 

The concrete implementation of this kernel is closely 
related to the entire program parallelization strategies. Figure 
1 shows the program of parallel implementation process, 
which includes the figure data inputs, adjacency matrix data 
for an array of data transformation, data transpose matrix and 
data from CPU to the GPU global memory copy operation, 
etc. After completion of copies of data, all the kernel 
functions will copy data from the global memory to the 
corresponding thread private store (including block within 
the shared memory and registers), then all threads will 
execute concurrently. 

After the execution, kernel function will finish the results 
that copy data from private memory of the threads to the 
GPU memory. Finally, the program will run over copy 
function at CPU side to copy the results of GPU memory 
back to CPU and write data to the output file. 

Kernel function algorithm for pseudo code is shown 
below: 

 
Algorithm 1: The main body of the Kernel 

1: Initialize( dist,preNode,decide);  
2: Relax(dist,preNode,decide);     
3: for i=0 to matrixSize do 
4:    alldist[source*matrixSize+i]=dist[i]; 
5: source+=BLOCK_NUM*THREAD_NUM; 

 
Algorithm 2: Initialize(dist, preNode, decide) 

1: for i = 0 to matrixSize do 
2:  dist[i] = cost[source+i*matrixSize]; 
3:  preNode[i] = source; 
4:  decided[i] = 0;            
5:decided[source] = 1;    

 
Algorithm 3: Relax (dist, preNode, decide) 

1: for i=0 to matrixSize do 
2:    for j=0 to matrixSize do 
3:   find the value of the smallest element； 
4:   Nd=low; 
5:    for w=0 to matrixSize do 
6:   if(decided[w]==0&&dist[w]>(dist[Nd]+ 
7:    cost[Nd+w*matrixSize]))    
8:   dist[w] = dist[Nd] + cost[Nd+w*matrixSize]; 
9:  preNode[w] = Nd; 
10:  end if 

 
Through continuous updating and relaxing, algorithm can 

find out the shortest distance to the first element in one 
dimensional array, the shortest path value is assigned to all 
dist matrix after the execution of elements of matrix Size. 
Finally, all the results will be written back to the text file in 
the host by the write file function. 

III. APPLICATION AND COMPARISON 

A. Test Platform and Data Sets 
This paper designs the parallel algorithm for the shortest 

path to accelerate the test environment to run on Windows 7 
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compatible with NVIDIA whole series of graphics. User 
needs specify the number of block and thread calls according 
to the nodes, memory for allocation. The computational 
algorithm is able to complete work calls automatically. This 
algorithm use CUDA to block the details of the hardware to 
simplify the general difficulty of GPU. At the same time, 
parallel shortest path algorithm based on GPU has a speed 
ratio about 8 times compares with the traditional serial 
algorithm, which can improve the efficiency of image 
segmentation significantly. 

There are also some shortcomings in the parallel shortest 
path algorithm which the paper has discussed. The 
acceleration effect of this parallel algorithm is worst than 
other parallel algorithms in dealing with the data node size 
20000 and above. Because of the limitation of hardware 
conditions in theory, parallel shortest path algorithm based 
on GPU acceleration will not always increase, but will close 
to a threshold of the optimal speed ratio that the algorithm 
can achieve and stabilize. Although test speedup of the 
parallel shortest path algorithm based on GPU in MRI image 
segmentation problem is good, it does not achieve the 
optimal speed ratio because of the limitation of problem size. 
In order to apply the algorithm on more practical problems, 
we must find the threshold value corresponding to the 
problem size and improve the related optimization. This will 
be the focus of future work. 
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