
MRI Image Segmentation Based on a GPU Shortest Path Algorithm

Jie Wanga, Weihao Chenb

School of Software Technology, Dalian University of Technology, Dalian, China
awangjie1003@163.com, bendeavour35@163.com

Abstract—Dijkstra algorithm can be adopted to distinguish
different parts of boundaries in medical image segmentation
problem, which can be a reference for further segmentation
operation. However, classical Dijkstra algorithm can hardly
adapt to real time image segmentation problem owing to its
exponentially O(n2) computing complexity, especially for the
increasing number of nodes. In this paper, we designed and
implemented a parallel shortest path algorithm accelerated by
GPU for medical image segmentation problem. A dynamic
relax approach is presented to optimize classical Dijkstra
algorithm. Therefore, the new parallel Dijkstra algorithm can
be easily applied to CUDA parallel framework without
concerning about GPU hardware and CUDA optimize details.
Two experiments have been conducted to evaluate the
algorithm performance. The results show that our new
Dijkstra algorithm can get 8 speedup for 4096 points compared
with the classical Dijkstra algorithm. Besides, an impressing
result with two speed up for 128*128 points problems is
demonstrated in parallel Dijkstra compared with parallel
Moore. In conclusion, the new parallel Dijkstra algorithm can
significantly improve the real-time performance of image
segmentation.

Keywords- CUDA; shortest path algorithm; medical image
segmentation

I. INTRODUCTION
Based on magnetic resonance phenomenon, magnetic

resonance imaging (MRI) gets electromagnetic signals from
human body, which filters to obtain useful information and
rebuild image for each organ of human body. Modern
medical image segmentation is a technology which
decomposes image into specific and different nature areas,
and extracts interested target areas. Medical image
segmentation [1] is an important research direction of
medical image processing, the basis of measuring lesion
region extraction, specific organization and implementation,
3d reconstruction result of medical image segmentation,
which has attracted widespread attention.

The shortest path for segmentation is the most commonly
used method in image segmentation. Dijkstra algorithm [2] is
a classic algorithm in SSSP (Single Source Shortest Paths)
problem, which can efficiently calculate the figure of all
nodes of the shortest path to the Source point. Medical image
segmentation problem based on Dijkstra algorithm can be
used to distinguish different adjacent parts of the boundary in
the figure, and provide the basis for further segmentation
operation. These images can be specified to isolate the area
of organs and tissues, so as to help professional medical
workers for further analysis. However, the time complexity
of Dijkstra algorithm is O(n2). In practice, computation time

will increase exponentially along with the increase of the
node size. Parallelizing the existing serial algorithm
gradually becomes the hot spot of research, with the growth
of computing power and programmability of graphics
processor GPU.

The pre-segmentation image is usually abstracted as a
connected graph in medical image segmentation problem,
whose pixels are abstracted as nodes, edges are abstracted as
the connection between adjacent pixels. Due to more nodes,
how we find the shortest path between nodes to speed up the
search becomes the key of this problem.

The main research of image segmentation problem at
home and abroad is how to design more efficient strategy of
priority queue or reduce the search space [3, 4]. Such as lv
jie [5] etc. select efficient sorting algorithm to improve the
speed of path searching. They optimize the process of
Dijkstra algorithm by sequencing the cycle of temporary
node binary heap sort of shortest path set [6], and reduce the
time complexity of searching process to O (nlogn). However,
the key of the above algorithms is not comprehensive, which
are relatively single and should be further improving the
precision of the searching. This algorithm is especially
poorly applied in medical image segmentation field. So using
a large number of threads in parallel execution of optimal
performance based on the existing parallel shortest path
algorithm can effectively improve the efficiency of the
shortest path algorithm.

II. PARALLEL SHORTEST PATH ALGORITHM
Classic serial SSSP algorithm including the Dijkstra

algorithm, Moore algorithm, etc. The study of the
parallelization of the classic algorithms can significantly
improve the efficiency of searching. The paper [7] proposes
parallel Moore SSSP algorithm which based on the storage
of source node to the nodes of the array D, queue elements of
an array Q, parallelize the process of search and accelerate
the algorithm to obtain the ideal results. There are also some
other improved parallelization strategies for the optimization
of the shortest path algorithm [8-11].

In medical image segmentation problem, the abstract of
each node in the undirected graph leads to the small number
of sides, narrow weight range and nonnegative integer. So
the current image segmentation uses Dijkstra algorithm or
the optimization algorithm based on Dijkstra for the
calculation of the shortest path.

A. Algorithm of Overall Process
The phase of file data reading is completed in the CPU,

data in a file is stored in n * n matrix way, there is also a
TAB between each elements. Initializing an array of data

2015 2nd International Conference on Intelligent Computing and Cognitive Informatics (ICICCI 2015)

© 2015. The authors - Published by Atlantis Press 1

transformation can improve the probability of a cache hit and
improve the efficiency of the I/O reading when every time
the GPU reads a row.

Kernel function is the parallel part that implements on the
GPU, whose primary mission is updating data of nodes,
searching nodes and storing functions of the shortest path.
Data will be stored by n * n matrix and return to the host side
after performing the kernel, the allocated storage space on
the GPU will be released at the same time.

B. The Key Variable Initialized
It is necessary to initialize the data and deliver them to

the GPU before parallel computing. Data structure directly
affects the work process, memory access patterns and the
system performance. GPU does not support allocating device
memory dynamically and using some dynamic data
structures. So the algorithm uses the linear array structure to
store the nodes information. Table I lists the types and
functions of some key variables used in algorithm
implementation process.

TABLE I. KEY VARIABLES AND FUNCTIONS

Name Type Function

matrixSize constant Number of nodes in figure decide the
array size, which defined by the user

BLOCK_NUM
THREAD_NUM constant User specify the number and size of the

blocks and threads
cost array Store the adjacency matrix

alldist array Store the result, and say the adjacency
matrix of the shortest path

Due to directly access the host memory of GPU is

impossible, you need to allocate memory on the GPU
equipment, and copy the data from GPU memory to CPU
memory. We can define the structure to unify the
management of the GPU memory.

C. The Kernel Function
The overall design thought of this program is avoiding

multiple calls of the kernel function which causes additional
threads for I/O. So we should design the kernel function to
avoid the correlation between processes and assign disposal
tasks to each kernel. After that all the kernel functions will
perform at the same time and make one-off copies at the end
of the completion of kernels, thus such ability can minimize
the cost of fetching.

Figure 1. Parallel implementation process function

The concrete implementation of this kernel is closely
related to the entire program parallelization strategies. Figure
1 shows the program of parallel implementation process,
which includes the figure data inputs, adjacency matrix data
for an array of data transformation, data transpose matrix and
data from CPU to the GPU global memory copy operation,
etc. After completion of copies of data, all the kernel
functions will copy data from the global memory to the
corresponding thread private store (including block within
the shared memory and registers), then all threads will
execute concurrently.

After the execution, kernel function will finish the results
that copy data from private memory of the threads to the
GPU memory. Finally, the program will run over copy
function at CPU side to copy the results of GPU memory
back to CPU and write data to the output file.

Kernel function algorithm for pseudo code is shown
below:

Algorithm 1: The main body of the Kernel

1: Initialize(dist,preNode,decide);
2: Relax(dist,preNode,decide);
3: for i=0 to matrixSize do
4: alldist[source*matrixSize+i]=dist[i];
5: source+=BLOCK_NUM*THREAD_NUM;

Algorithm 2: Initialize(dist, preNode, decide)

1: for i = 0 to matrixSize do
2: dist[i] = cost[source+i*matrixSize];
3: preNode[i] = source;
4: decided[i] = 0;
5:decided[source] = 1;

Algorithm 3: Relax (dist, preNode, decide)

1: for i=0 to matrixSize do
2: for j=0 to matrixSize do
3: find the value of the smallest element；
4: Nd=low;
5: for w=0 to matrixSize do
6: if(decided[w]==0&&dist[w]>(dist[Nd]+
7: cost[Nd+w*matrixSize]))
8: dist[w] = dist[Nd] + cost[Nd+w*matrixSize];
9: preNode[w] = Nd;
10: end if

Through continuous updating and relaxing, algorithm can

find out the shortest distance to the first element in one
dimensional array, the shortest path value is assigned to all
dist matrix after the execution of elements of matrix Size.
Finally, all the results will be written back to the text file in
the host by the write file function.

III. APPLICATION AND COMPARISON

A. Test Platform and Data Sets
This paper designs the parallel algorithm for the shortest

path to accelerate the test environment to run on Windows 7

2015 2nd International Conference on Intelligent Computing and Cognitive Informatics (ICICCI 2015)

© 2015. The authors - Published by Atlantis Press 2

system, choos
computing ca
memory frequ
Cores, 1.40 G
architecture a
a block of 10
block for the s

As the pro
graph is mor
function, whi
this paper t
simulation. T
store in text
different size.

B. The Comp
Serial alg

comparison is
of parallel alg
increase the a
Meanwhile th
memory is mo
GPU parallel
so it’s not su
shortest path w

Figure 2. Se

The perfo
well when ju
nodes is aro
parallel algor
higher than th
gradually inc
obtains an in
widening.

C. The Comp
Parallel s

excellent spe
Moore parall

0

20

40

60

80

100

120

140

160

180

128

S

G

se NVIDIA G
apacity of 2.1,
uency of 184

GHz GPU freq
llows the max

024, so using t
sake of backw
ocess of MRI
re complex, e
ich involves
tests the dat
The input dat

file, we need
.

parision of Ser
orithms and G
s shown in fig
gorithms costs
additional tim
he process of
ore time-consu
acceleration i

uitable to use
when the amo

erial algorithms an
co

ormance of pa
unction points
ound 1000, th
rithm based o
hat of serial a

crease, the ac
ncrease gradu

parision of Mo
shortest path
edup compare
lelization and

256 5

Serial Dijkstra

GPU Parallelizat

GeForce GTX
, memory 1 G
8.00 MHz, a
quency. The la
ximum numbe
the maximum

ward compatib
I image abstra
especially the
professional
a according

ta using adjac
d to input da

rial and Para
GPU parallel

gure 2. Becaus
s a lot of fetc

me consumptio
f copying the
uming. Given
is much higher
e GPU paralle
ount of nodes a

nd GPU parallel
omparison

arallel algorith
reach 256, w

he calculation
n GPU show
algorithm. As

cceleration of
ually for 7 ~

oore and the N
algorithm b

ed with other
Dijkstra par

512 1024

He

tion

X460 GPU. G
G, bit width 25

total of 336
atest GTX460

er of active thr
m 512 threads i

ility.
action for con
e design of th
medical know
to documen

cency matrix
ata that captu

llel Algorithm
algorithms sp

e the kernel fu
ch operations,
on of I/O oper
e result back
the cost of us

r than the pure
el calculation
are small.

algorithms consu

hm based on G
while the num
n efficiency

ws nearly three
s the junction
f parallel algo
~ 8, and the

New Algorithm
based on GP
r parallel algo
rallelization sp

2048 409

eap Sorting

TX460
56 - bit
CUDA

0 Fermi
reads in
in each

nnected
he cost
wledge,
nt [12]

which
ure into

m
peedup
unction
 which
rations.
to the

sing the
e CPU,
of the

uming

GPU is
mber of

of the
e times

n points
orithms
gap is

m
PU has
orithm.
peedup

co
sh
av
As
of
pr
GP
alg

pr
re
pe
hi
W
ca
pr
fu
da
ru
alg
op
m
ke

ex
GP
a s
th
ac
Th
12
co
alg
co

pa
CU

96

omparison is s
hortest path a
verage GPU M
s nodes contin
f GPU Moor
roposed algori
PU Moore a
gorithm propo

Figure 3. Moo

It can be see
rocess that the
duce the k

erformance is
erarchical par

When the junct
alls has resu
rocess. Becaus
unctions need
ata you need
unning time of
gorithm of hie
peration of the

make up the cos
ernel function.

We can dra
xperiment that
PU Moore alg
speed of more

heory. Thus w
cceleration wh
he general im
28* 128 pix
onverted into
gorithm of

omputational e

IV.
We design

arallel shortes
UDA framew

0.3
1.

0.1 0.0

2

4

6

8
10

12

14

16

G

shown in figu
algorithm is

Moore algorith
nue to increas
re algorithm
ithm, they wil
algorithm inc
osed in this pa

re parallelization
com

en from the an
e algorithm wh
kernel functio
s excellent th
rallel strategy,
tion is more t

ulted in exce
se of operating
extra time to

d to own priv
f the kernel fu
erarchical kern
e kernel functi
st of overhead
.

aw the followi
t when the nod
gorithm for ac
e than the desi

we will choose
hen the junctio

mage for MRI
xels which
matrix, so a
this paper c

efficiency.

CONCLUSIO

and realize
st path algori
work implem

5 2.2
3.1

4 1.2 1.8

GPU Paralleliza

ure 3. GPU ac
nearly 1.5 t

hm when node
se, the speed o

will increase
ll increase gra
crease slightly
aper.

n and Dijkstra par
mparison

nalysis of imp
hich the pape
on calls. W
han GPU Mo
so the speed i

than 20000 po
essive interna
g too much no
access the sha
vate storage,

function. How
nel calls can e
ion in each lev
ds caused by m

ing conclusion
de size continu
cceleration rat
ign algorithm u
e GPU Moore
on points are
image segme
contains 163
design of par

can significan

ON AND FUTUR

a kind of
ithm in this
mentations o

5.7

8.1
9

3.5

5.5

8

tion

cceleration pa
times higher
es are under 20
of the acceler
e faster than
adually close,
y more than

rallelization speed

plementation o
r puts forward

Whose comp
oore algorithm
is better in the
oints, fewer k
al implement
ode data, the k
ared memory,

and increase
wever, GPU M
ensure the effi
vel task, which
multiple calls t

ns from the a
ues to increase
tio will increa
until a thresho

e algorithm fo
more than 20
ntation proble
384 nodes w
rallel shortest
ntly improve

RE WORK
GPU acceler
paper, which

of NVIDIA

9.8

12.8 13.

8.4

11.5

14.

GPU Moore

arallel
than

0000.
ration
n the
even

n the

dup

of the
d can
uting
m of
e test.
kernel
tation
kernel
 read
e the

Moore
icient
h can
to the

above
e, the
ase at
old in
or our
0000.
em is
when
path

e the

ration
h use

and

.6

.7

2015 2nd International Conference on Intelligent Computing and Cognitive Informatics (ICICCI 2015)

© 2015. The authors - Published by Atlantis Press 3

compatible with NVIDIA whole series of graphics. User
needs specify the number of block and thread calls according
to the nodes, memory for allocation. The computational
algorithm is able to complete work calls automatically. This
algorithm use CUDA to block the details of the hardware to
simplify the general difficulty of GPU. At the same time,
parallel shortest path algorithm based on GPU has a speed
ratio about 8 times compares with the traditional serial
algorithm, which can improve the efficiency of image
segmentation significantly.

There are also some shortcomings in the parallel shortest
path algorithm which the paper has discussed. The
acceleration effect of this parallel algorithm is worst than
other parallel algorithms in dealing with the data node size
20000 and above. Because of the limitation of hardware
conditions in theory, parallel shortest path algorithm based
on GPU acceleration will not always increase, but will close
to a threshold of the optimal speed ratio that the algorithm
can achieve and stabilize. Although test speedup of the
parallel shortest path algorithm based on GPU in MRI image
segmentation problem is good, it does not achieve the
optimal speed ratio because of the limitation of problem size.
In order to apply the algorithm on more practical problems,
we must find the threshold value corresponding to the
problem size and improve the related optimization. This will
be the focus of future work.

ACKNOWLEDGMENT
The authors gratefully acknowledge the support from

National Natural Science Foundation of China (61472100)
and the central university Fundamental Research
(DUT14QY32).

REFERENCES
[1] Zhang Dong, Zeng Wenhua. An Improved MRI Brain Segmentation

Algorithm Based on AntPart [C]. //2nd International Conference on
Computer and Automation Engineering. Singapore, Singapore: IEEE,
2010:533-535

[2] E. W. DIJKSTRA. A Note on Two Problems in Connexion with
Graphs [M]. Numerische Mathematik ,1959: 269--271

[3] Wang Shaohua, Zhong Ershun, Zhang Xiaohu, et al. The shortest path
algorithm analysis technology to accelerate the search space.
Geospatial Information [J], 2013, 11(06) : 62-65

[4] Song Qing and Wang Xiaofan. Review the shortest path algorithm to
accelerate technology research [J]. Journal of University of Electronic
Science and Technology, 2012, 41(2) : 176-184

[5] Lv Jie, Xiong Chunrong. Interactive medical image segmentation
algorithm simulation [J]. Computer Simulation, 2010,27(12):262-266

[6] Dang Jianwu, Du Xiaogang, etc. Pairing heap interactive medical image
segmentation algorithm [J]. Computer Science, 2009, 36(11): 290-292

[7] Guo Zhaozhong, Wang Wei, Zhou Gang, et al. Single- source shortest
path algorithm design and implementation of GPU[J]. Computer
Engineering, 2012,38(2) : 42-44

[8] Hector Ortega-Arranz, Yuri Torres. A New GPU-based Approach to
the Shortest Path Problem [C]. //Proceedings of HPCS’2013. Helsinki,
Finland: IEEE, 2013:505-511

[9] Pawan Harish, P. J. Narayanan. Accelerating Large Graph Algorithms
on the GPU Using CUDA[C]. // Proceedings of HiPC’2007. Goa,
India: Springer, 2007: 197-208

[10] Micikevicius P. General Parallel Computation on Commodity
Graphics Hardware: Case Study with the All-Pairs Shortest Paths
Problem[C] // Proceedings of PDPTA'04. Las Vegas, NV, United
states: CSREA Press: 2004: 1359-1365

[11] U. Meyer, P. Sanders. Δ-stepping: a parallelizable shortest path
algorithm [J]. Journal of Algorithms, 2003. 49(1): 114-152

[12] Moore E F. The Shortest Path Through a Maze[C]// Proceedings of
the International Symposium on Theory of Switching. Cambridge,
UK: Harvard University Press, 1959: 285-292

2015 2nd International Conference on Intelligent Computing and Cognitive Informatics (ICICCI 2015)

© 2015. The authors - Published by Atlantis Press 4

