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Abstract—To solve nonlinear non-Gaussian filter problems in 
target tracking, Gaussian mixture unscented particle filter 
with adaptive residual resample algorithm is proposed. 
Gaussian mixture unscented particle filter is utilized as 
importance density to improve the estimation accuracy 
evidently. By introducing adaptive residual resample, the new 
algorithm overcomes the defects of general resample algorithm. 
To evaluate the proposed algorithm, the random surfer 
dynamic model and range-rate measurement are involved as 
nonlinear models with two static sensors. Simulation results 
show that the proposed algorithm performs robust and 
effective. As a consequence, compared with the general 
Gaussian particle filter, the proposed algorithm is more 
accurate in estimated state and more diverse in particles. 

Keywords-Target tracking; Gaussian mixture; Unscented 
particle filter; Residual resample 

I. INTRODUCTION 
In the last decades, particle filters (PF) have been 

popularly used in many fields such as image processing, 
target tracking, computer vision, economics and management. 
Particle filters, utilizing the Sequential Monte Carlo (SMC) 
approach to approximate the Bayesian estimation [1], which 
are a type of powerful tool to dealing with the nonlinear non-
Gaussian filtering problems. Their main mechanism is to 
propagate a set of weighted samples, or particles, and the 
estimated state can be calculated with these weighted 
particles. The particles are updated by implementing 
sequential importance sampling (SIS) process recursively as 
new measurement information becomes available [2]. 

Initial particles are sampled from prior probability 
density function and particle weights are assigned by 
importance density. As a result, the particle filters efficiency 
depends on the choice of importance density. The principle 
of importance density is to minimize the state variance. 
Optimal importance density is a conditional posterior density 
of the state. However, it is difficult to sample particles from 
the posterior density. Instead, importance density is used to 
approximate it, and it is common to choose Gaussian density 
[5]. For many medium nonlinear models single Gaussian 
density has proven effective, however, for deep nonlinear 
and higher dimensionality models, the performance becomes 
bad.  

In this paper, a new algorithm for importance density in 
particle filters is proposed. The unscented particle filter with 
Gaussian mixture algorithm is introduced as the importance 
density, in which more measurement information is used. 

Gaussian mixture method is used in unscented particle filter 
to improve the performance, we name this algorithm the 
Gaussian mixture unscented particle filter (GM-UPF). 

However, a common problem with SIS particle filter is 
that the particle importance weights increase stochastically 
over time, thereby most particle weights are almost zero, 
which called particle degeneracy. To solve the problem, 
sampling Importance resampling (SIR) is developed. Various 
resample methods have been developed in recent years, 
including multi-nominal resample, residual resample, 
stratified resample and systematic resample [6]. 
Unfortunately, resampling causes sample impoverishment 
problem, which results in loss of diversity of particles. 

To circumvent sample impoverishment, adaptive residual 
resampling is proposed, which avoids uncensored replacing 
lower weight particles with higher weighted particles and has 
the ability to maintain sufficient diversity of particles without 
increasing the particles size. 

The rest of the paper is organized as follows. In section 
Ⅱ, system model is introduced in detail. Section Ⅲ presents 
the principle and realization of the proposed GM-UPF and 
adaptive residual resample. Simulations results are 
presented in section Ⅳ. Finally, conclusions are given in 
section Ⅴ. 

II. SYSTEM MODELS 

A. Model Description 
Consider the problem of target tracking for the following 

nonlinear discrete-time system. The state space model and 
measurement model [2] are represented by: 

State model 
 

1 1( , )k k k ks f s w− −=                                (1) 
 
Measurement model 
 

( , )k k k kz h s v=                                   (2) 
 

Where : n r n
kf R R R× →  is a nonlinear function as the 

state transition function to calculate state vector 
n

ks R∈ , 

and 1
r

kw R− ∈  is an independent identically distributed (i.i.d) 
process noise vector whose known distribution is 
independent of time. At each discrete time point k , 
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m
kz R∈  denotes the system measurement output, according 

to the state vector ks  and measurement model as shown in 

Eq. (2). : n p m
kh R R R× →  is the system measurement 

function, and 
p

kv R∈  is another i.i.d measurement noise 
vector. 

B. State Model 
In order to evaluate the performance of the proposed 

nonlinear algorithm, we consider the random surfer dynamic 
model [14]. The dynamic state model in Eq. (1) is 
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             (3) 

 

Where tΔ  is sample interval, 
x
kw  and 

y
kw  are zero-mean 

uncorrelated Gaussian white accelerate changing with time. 

The dynamic state vector ks  in the Eq. (3) is described 
as follows: 

 
, , ,

T

k x y k
s x y v v⎡ ⎤= ⎣ ⎦                                 (4) 

 
( , )x y  is coordinate of the target, xv is velocity of the x 

direction, while yv  is velocity of the y direction. 

C. Measurement Model 
For tracking the coordinate and the velocity of a moving 

target, range and range rate are used as the measurement 
vector. Range, between the target and sensor, is given by: 

 
1/22 2( ) ( )v o v oR x x y y⎡ ⎤= − + −⎣ ⎦                  (5) 

 
Where ( , )o ox y  is sensor coordinate and it is fixed, 

( , )v vx y  is target coordinate and it is changing with time. R 
is always positive according the definition. 

Range rate, also called the Doppler or radial velocity, is 
the velocity along a line extending from the sensor to the 
target. 

Range rate can be derived from range [9].  Range rate 
( R ) is given by /dR dt  

 

1/ 22 2

2 ( ) ( )

2 ( ) ( )

( ) ( )

x y
v o v v o v

v o v o

x y
v o v v o v

x x v y y vdRR
dt x x y y

x x v y y v

R

⎡ ⎤− + −⎣ ⎦= =
⎡ ⎤− + −⎣ ⎦

⎡ ⎤− + −⎣ ⎦=

           (6) 

 

Where 
x
vv  and 

y
vv  are velocity of target and given by 

state vector in section B. 
For testing purposes, two static sensors are used in 

measurement model. The measurement model is defined as 
follows: 

 
, , ,k a a b b k

z R R R R⎡ ⎤= ⎣ ⎦                         (7) 

Where aR  and bR  are the range between sensor a (or b) 

and target. aR  and bR  are range rate to sensors. 

III. GAUSSIAN MIXTURE UNSCENTED PARTICLE FILTER 
WITH ADAPTIVE RESIDUAL RESAMPLE 

A. Gaussian Mixture Unscented Particle Filter 
The Gaussian mixture unscented particle filters employ 

the unscented transformation to generate more suitable 
posterior PDF and use mixture Gaussian approximation to 
produce more accurate estimated state. The advantage of 
GM-UPF is that it can handle the heavy-tailed distributions 
better. 

We assume the state vector is ks  which owns n  
elements. Its mean is s  and variance is sP . The basic idea 
of the unscented particle filter is that choosing 2 1n +  
weighted samples { },j jS wχ=  to approximate the random 
variable distribution of s  according to the s  and sP . We 
called these weighted samples as χ  point.  

Here the definition of the χ  point for each particle i , 

and for each time k  is shown as follows, 
 

( )
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            (8) 

 
For each sigma point j , its related weight is 
 

0
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/ ( )
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Where 
2 ( )n nλ α κ= + − , 

j
mw  represents the mean 

weight of sigma point, while 
j

cw  is the covariance weight. 
α , β  and κ  are parameters of sigma point, and they can 
be determined by experiments. 

For each particle i , the state vector of particles is 
updated using unscented transformation and Gaussian 
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approximation, and for each time k , we make the following 
steps. 
Initialization:  

Initializing the particles to get mean 0
is   and covariance 

sP  according to Gaussian density. 
Calculate sigma points: 

Use Eq. (20) to obtain sigma points 
( )

1
i j

kχ −  at time k (k>0). 
Update time: 
 

( ) ( )
| 1 1( )i j i j

k k kfχ χ− −=                                        (10) 
2

( ) ( )
| 1 | 1

0

n
i j i j

k k m k k
j

s w χ− −
=

= ∑                                    (11) 

 
2

( ) ( ) ( ) ( ) ( )
s, | 1 | 1 | 1 | 1 | 1

0
[ ][ ]

n
i j i j i i j i T
k k c k k k k k k k k k

j
P w s s Qχ χ− − − − −

=

= − − +∑         (12) 

 
( ) ( )
| 1 1( )i j i j

k k khγ χ− −=                                       (13) 
 

2
( ) ( )
| 1 | 1

0

n
i j i j

k k m k k
j

z w γ− −
=

= ∑                                    (14) 

Update measurement: 
 

2
( ) ( ) ( ) ( ) ( )
, | 1 | 1 | 1 | 1 | 1

0
[ ][ ]

n
i j i j i i j i T

z k k c k k k k k k k k k
j

P w z z Rγ γ− − − − −
=

= − − +∑         (15) 

 

  
2

( ) ( ) ( ) ( ) ( )
, | 1 | 1 | 1 | 1

0
[ ][ ]

n
i j i j i i j i T

sz k c k k k k k k k k
i

P w s zχ γ− − − −
=

= − −∑              (16) 

 

( ) 1( ) ( )
, , | 1
i i

k sz k z k kK P P
−

−=                                (17) 

 
( ) ( ) ( )

| 1 | 1( )i i i
k k k k k k ks s K z z− −= + −                          (18) 

 
( ) ( ) ( )

s, s, | 1 ,
i i i T
k k k k z k kP P K P K−= −                             (19) 

 
Evaluate the weight and normalize: 
Gaussian mixture method is applied in evaluating the 

particle weight, one Gaussian approximation use prior 
component message with unscented transformation, another 
one Gaussian approximation use measurement information. 

 
( ) ( )( )i i
k kz f s=                                       (20) 

 
( ) ( )1 ( ) ( )( )

2
1,

i iT
k kk kz z inv R z zi

kw e
− − −

=                          (21) 
 

( ) ( )1 ( ) ( )( )
2

2,

i iT
k kk ks s inv Q s si

kw e
− − −

=                          (22) 
 

1, 2,
i i i
k k kw w w= +                                      (23) 

 
We get the estimated state  

 

1

N
i i

k k k
i

s w s
=

= ∑                                        (24) 

B. Adaptive Residual Resample  
A common problem in particle filters is particle 

degeneracy phenomenon in which a number of particles are 
devoted to update particles whose contribution to 
approximation of ( | )i

k kp z s  is almost zero. To solve the 
degeneracy phenomenon, resampling is introduced. The 
basic idea of resampling is to eliminate particles that have 
small weights and to concentrate on particles with large 
weights. However, over resampling quickly results in 
impoverishment problem which leads to lose of diversity in 
particles. 

In this section, adaptive residual resample method is 
proposed which is simple but effective and compensates 
some support particles to improve residual resampling 
process. The steps of adaptive residual resample are: 

(1) For the particles 
{ }

1
,

Ni i
k k i

s w
= , all weights are 

multiplied by the ensemble size N. Then 
i
kn  copy particles 

are taken of each particle 
i
ks  in which 

i i
k kn Nw⎢ ⎥= ⎣ ⎦ . The 

whole number of copy particles is 1

N
i
k

i
N n

=

′ = ∑
, therefore we 

obtain the new particles { }
1

,
Ni i

k k i
s w

′

=
. 

Calculate the residual particles m N N ′= − . If 0m > , 
go to step (2), otherwise, go to step (3). 

(2) Allocating new weights for all the particle: 
 

( ) /i i i
k k kw Nw n m′ = −                             (25) 

 

The new distributed particles 
{ }

1
,

Ni i
k k i

s w′ ′

=  is generated, in 
which we choose the m max weighted particles as spread 
copy particles. 

 

{ } { }
1 1

, max ,
m Ni i i i

k k m k ki i
s w w s′ ′

′= =
=                      (26) 

 
(3) Draw the residual resample particles: 
 

{ } { } { }{ }1 1 1
,

N N mi i i
k k ki i i

s s s
′

′ ′= = =
=                          (27) 
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C. Gaussian Mixture Unscented Particle Filter with 
Adaptive Residual Resample Algorithm 
We propose the algorithm combining Gaussian mixture 

unscented particle filter with adaptive residual resample to 
improve particle filter propagation. 
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Figure 1. True position and the estimates of GPF and GM-UPF 

The steps of the Gaussian mixture unscented particle 
filter with adaptive residual resample algorithm are shown 
as follows: 

(1) Initialization: 
At time k=1, generate N particles 0 0( )is p s∼  0, ,i N= ⋅⋅⋅  
and calculate the mean i

ks  and variance ( )
s,0

iP . 
(2) Sampling 
For time 2,3,k = ⋅⋅⋅ , using unscented transmission with 

Gaussian mixture described in section A to update the 
particles. Calculate the particle weights from the Eq. 35. 

(3) Resampling 
If Eq. 19 is satisfied, apply adaptive residual resampling 

from section B. 
(4) Output: 
Output the estimation result of state s , normalize the 

weights and calculate the variance for next time. 

IV. SIMULATION RESULTS 
In order to demonstrate the capability of the proposed 

GM-UPF with adaptive residual resampling algorithm, a 
great number of Monte Carlo simulations are carried out. 
The generic GPF and GM-UPF with adaptive residual 
resampling are realized respectively.  

We evaluate the algorithm performance by estimation 
error and choose the root mean square error defined as 
RMSE: 

 

2

1

1 ( )
T

k
k

RMSE s s
T =

= −∑                           (28) 

 

Where T is the number of time step, ks is the real value 

of the target and ks  is the estimation value. 
The target dynamic state model and measurement model 

are described in section Ⅱ . In measurement model, two 

static sensors are fixed at ( )0, 2000  and ( )3000,1500 . The 

target initial location is ( )0,0  and the initial velocity is 
( )10,150 . Set total time step 50endk = , particle number 

10sN = , measurement covariance (10, 4,10, 4)R = , and 

initial covariance _ 0 (1000,100,1000,100)P = . For 
unscented transformation, the initial parameters assignment 

are 4na = , 0kappa = , 1alpha =  and 2beta = . 
The true position and the estimation by implementing 

GPF and GM-UPF are shown in Fig. 1. It can be seen that in 
random surfer dynamic model the estimated states of GM-
UPF are almost coincident with the true track, while the 
GPF estimations have some deviation.  

Fig. 2 and Fig. 3 shows the estimation of x and y, 
respectively. It can be also seen that GM-UPF outperforms 
compared with GPF. 

The tracking state RMSE of GPF and GM-UPF can be 
seen from Fig. 4, which is applied to compare the accuracy 
of the estimation and demonstrate the consistency and 
convergence of the algorithms. It is obvious that the RMSE 
of GM-UPF is lower than GPF algorithm. 

Here we give some simulation results of the effective 

particle size 
ˆ

effN , as shown in Fig. 5. It can obtain that 
ˆ

eff GM UPFN −  is more than 
ˆ

eff GPFN  noticeably. The results 
prove that GM-UPF prevails GPF in solving the particle 
degeneracy phenomenon. 

TABLE I. MEAN RESULTS ON 20 INDEPENDENT MONTE CARLOS 

Variables GPF 
(mean) 

GM-UPF 
(mean) 

Time(s) 0.1965 0.2320 

Xrmse 20.7934 5.4786 

Yrmse 35.514 7.8878 

 ˆ
effN  4.9556 9.3937 
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Figure 2. True x and the estimates of GPF and GM-UPF 
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Figure 3. True y and the estimates of GM-UPF 
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Figure 4. Track state RMSE error of GPF and GM-UPF 
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Figure 5. Effective particle size of GPF and GM-UPF 

For further illustration, we run 20 independent Monte 
Carlos to compute mean results of variables shown in Table. 
1. The elapsed time of GM-UPF is slightly longer than that 
of GPF in Table. 1, therefore the optimization can be made 
in the future work. From the results of Xrmse, Yrmse and 

ˆ
effN , we can see that the proposed GM-UPF is more 

outstanding, which proves the GM-UPF enhance the 
accuracy of nonlinear tracking algorithm. 

V. CONCLUSIONS 
In this paper, Gaussian mixture unscented particle filter 

with adaptive residual resample algorithm is presented. The 
performance of particle filter heavily depends on the 
importance density. By introducing Gaussian mixture 
unscented transformation as the importance density, the 
proposed GM-UPF algorithm approximates the posterior 
PDF more effectively. To overcome the defects of the 
traditional resample algorithms, the adaptive residual 
resample algorithm is applied in GM-UPF, thus solving the 
degeneracy phenomenon and particle impoverishment 
problem to a degree. Simulations are made to evaluate the 
performance of the proposed algorithm, range and range rate 
are utilized as the measurements with two sensors, and the 
random surfer dynamic model is used as states. Simulation 
results prove the GM-UPF algorithm can improve the 
performance compared with GPF, and demonstrate the GM-
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UPF algorithm is quite promising in nonlinear non-Gaussian 
filtering problems. 
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