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Abstract—The accurate modeling of primary users (Pus) 
behavior is important and crucial to cognitive radio (CR). The 
method to detect idle frequencies, not used by primary users’ 
(Pus’) has been widely investigated recent years. Existing 
researches need to estimate and select the threshold of the 
energy detector manually. In this paper, we propose an 
unsupervised approach to estimate channel states. We adopt 
different number of observed state according to different 
classification in hidden Markov model (HMM). We trained 
and tested the model through experiments using real spectrum 
measurement data. The system we proposed can automatically 
deal with large amounts of data and present high performance 
and good expansibility to predict channel state. 

Keywords-Component; Hidden Markov model; Cognitive 
Radio; Unsupervised Prediction  

I. INTRODUCTION 
Spectrum resource is non-renewable. To better utilize the 

spectrum source, Cognitive radio technology emerges, and 
has been extensive research to find a method to share the 
licensed spectrum. The cognitive radio senses a given 
channel for idle time of the primary or licensed users, to 
prevent the harmful interference when a secondary user try 
to access the channel during such intervals [1]. In general 
spectrum sensing, the focus is on modeling of spectrum 
occupancy and predicting the status of Pus as being active or 
idle using different kinds of sensing techniques[2][3]. 

Recently, many researches have focused on HMM 
approach to predict Pus channel state. For examples, a real-
time measurements collected in the paging band were used to 
validate the on-off behavior of Pus has been introduced in [4]. 
In [5], a spectrum occupancies predicting approach based on 
a non-stationary hidden Markov model was proposed. 
Nguyen et al. proposed a hidden bivariate Markov model to 
characterize the transmission behavior of a PU [6]. However, 
most of the previous works identified the idle and busy states 
of a channel by selecting a threshold for the energy detector 
from a histogram of the power levels (in dBm). And the 
threshold was set based on the noise level of the spectrum 
band and noise figure of the receiver. This paper puts 
forward an unsupervised prediction of channel state based on 
the k-means algorithm and multi-peaks Gaussian fitting 
without selecting a threshold manually. Besides some of the 
previous works only concerned about two observation states 
in a basic or an expansion HMM, while others defined the 
observation through an normally distribution [7]. However, 

the histograms of the power in most channels are various 
from each other and not only have two independent Gaussian 
signal areas. So a single threshold is no longer applicable, 
and the prediction effect of the channel states is 
unsatisfactory with the number of the single in the histogram 
of the power increasing. Our approach identify different 
number of observation states through different classification 
by selecting multiple thresholds. Relying on real spectrum 
measurement data, the parameters of model is estimated by 
Baum-Welch algorithm. Given these parameters, the state of 
activity of the Pus at any time and frequency band is 
predicted using the forward-backward algorithm. We have 
carefully implemented and tested our model rely on real 
spectrum measurement data. Our system show a good 
performance in different situations. 

The remainder of the paper is organized as follows. An 
unsupervised prediction of channel state model for spectrum 
sensing is given is Section Ⅱ , Section Ⅲdiscusses the 
system performance evaluation. Concluding remarks are 
given in Section Ⅳ. 

II. SYSTEM MODEL 
The configuration of the proposed unsupervised 

prediction of channel state system for dynamic spectrum 
access is shown in Figure1. The system consists of three 
main components: channel analyzing and classifying, 
channel parameter estimator, channel state estimator and 
predictor. The channel analyzing and classifying selects the 
channels which are not busy or idle all the time as our 
objects of study and classifies them into different types. The 
channel parameter estimator estimates the HMM parameter 
for different types. The channel state estimator and predictor 
uses the estimated HMM parameter to estimate the hidden 
state as a base of channel access policy. 

A. Channel Analyzing and Classifying 
In this system, the data of spectrum channels are 

classified and fitted according to the k-means algorithm and 
multi-peaks Gaussian fitting. We first define a maximum 
classification M and decrease it step by step to get the final 
classification N according to two criterions, the first is that 
the absolute difference of two classifications’ centers should 
be less than the threshold cr , ant the other is that the number 
of data in a classification should be more than the threshold 

nr . Set the two criterions is to combine two similar kinds 
and cut down the unnecessary classification. The center of 
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each classification is set as the initial mean value of the 
multi-peaks Gaussian fitting method to fit the spectrum 
measurements. The multi-peaks Gaussian fitting function is 
described as 

 
Figure 1.  System model for unsupervised prediction of channel state in 

CR 
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B. Maintaining Channel Parameter Estimator 
In this paper, we denote a discrete-time Markov chain 

by { },S , 0,1,t tY t = … .The process St is the status of a 

licensed channel by a set { }= 1, 2S  with 1 representing the 

idle state of the channel and 2 its busy state, while { }tY is 
referred to as the observable process and its value is obtained 
from real spectrum measurements. The hidden process {St,} 
is a discrete-time finite state homogeneous Markov chain. 
The random observable{ }tY are conditionally independent 

given { }tS . Using the curve fitting method, we get two 

groups of data, one on mean iμ and the other on the 

variance iσ from function (1). We sort the results computed 
by (2) from lowest to highest to get the multi-thresholds. A 
given channel with n classification has 2*N thresholds. 
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Let
{ }, ,ijA a i j S= ∈

denote the transition matrix 

of{ }tS , 
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Let ( )1 ,i P S i i Sπ = = ∈ , denote the probability that 
initial state is i . We define the observed state 

sequence{ }, 0,1,tO t = … by: 
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Let set { }O= 1, 2, 1N +… . 

And
{ }, ,jk jkB B b j S k O= = ∈ ∈

is the emission 
probability matrix, 
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The HMM for a given channel is the characterized by the 

parameter ( ), , BAλ π= . 
Now we proceed to estimate the parameters of a HMM 

based on a sequence of hidden states. 
{ }, 1, , ,T

t ts s t T s S= = ∈… and a sequence of 

observations, { }, 1, , , oT
t to o t T O= = ∈… . 

The parameter estimation can be done by Baum-Welch 
algorithm [9]. For a given λ , the parameters are re-

estimated and the HMM update with a new λ̂ .  

We define
( ) ( )| ,T

t tq j P s j o λ= =
to be the 

probability of being in state is at time t given the observation 

to , 
( ) ( )1, , | ,T

t t tq i j P s i s j o λ+= = =
to be the 

probability of being in state iS at time t and transiting to 

state jS
at time t+1 given to under the parameter λ . The 

expected number of transition from state iS during the path is 
given by 
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The model parameters of HMM from a training 

sequences can be estimated as λ̂ . The estimation formulas 
are given by 

 
( )1ˆi q iπ =                                (7) 
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Then we get the new parameter of HMM described 

as ( )ˆ ˆ ˆˆ, , BAλ π= , this algorithm generates a sequence of 

HMM parameter estimates with non-decreasing likelihood 
values. Every time we iterate the Baum algorithm starts with 
a current parameter lλ and estimate a new parameter 1lλ + . 
The algorithm is terminated when a convergence criterion is 
satisfied. 

C. Channel State Estimator and Predictor 
Spectrum sensing detects the availability of the spectrum, 

which is essential and important to CR. The goal of the 
spectrum sensing is to accurately predict the state of a given 
channel with low probability of false alarm and high 
probability of detection. Predicting the channel state at one 
time step ahead the current state based on a sequence of 
hidden states, { }, 1, , ,T

t ts s t T s S= = ∈… and a sequence 

of observations, { }, 1, , , oT
t to o t T O= = ∈… can be 

solved using hidden Markov model Viterbi algorithm [8].  
We let ( )t iδ to be the maximal probability of state 

sequences of the length T that end in state i , ( )t iδ can be 
written as  
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Let ( )t iφ  to be the array that store the parameters that 

maximize ( )t iδ . The initial value of the intermediate 
variable is 
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The recursive computation of ( )t jδ and ( )t jφ can be 

done by 
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Then we can get the calculated likelihood 

probability
*P and the estimated state at T *

Tq . 
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The estimating of the hidden state in a given channel is 
 

( )* *
1 1 ,    1, 2, ,1t t tq q t T Tφ+ += = − − …        (17) 

 
The channel access policy makes decision based on the 

outcome from the channel state estimator and predictor. 

III. PERFORMANCE ANALYSIS 
In this section, we carry out some numerical experiments 

based on real spectrum measurement data to evaluate the 
performance of the CR system discussed in Section Ⅱ.  

A. Channel Parameter Estimation with Real Spectrum 
Measurements 
The data used in this paper were collected through a 

spectrum analyzer on the rooftop of the New Main Building 
at Beihang University, from 00:00:00 March 18, 2015 to 
00:00:00 March 22, 2015. We randomly study the 88-128 
MHz band with a frequency resolution of 100 KHz and a 
time resolution of 10 seconds. The system model in the 
proposed method based on day spectrum measurements at 
random from the five days’ data. Figure 2 shows the 
occupancy spectrum measurements over 24 hours in March 
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19 in the selected band. From the figure, we can see that 
most of the channels are being utilized but not all channels 
are occupied all the time. The number of observation 
symbols for this channel is 8640.  

We analyzed and classified the measurements into three 
classifications depend on the value n obtained by the method 
in Section Ⅱ based k-means algorithm in each channel. The 
thresholds cr and nr influence the precision of the number of 
the classifications. In this paper we defined 

1cr = and 800nr = . Figure3 shows histogram of the 
different classifications. Figure4 shows the histogram plots 
of the channels we randomly selected in four representative 
types. The left figure of classification 1 demonstrates the 
channel is always utilized and the right one shows a channel 
barely occupied. The method proposed in this paper focus on 
estimating the states of the channels which both have noise 
and signal as classification 2 and classification 3 in the 
histogram plots shows. 

In this section, we only focus on HMM parameter 
estimation for a single channel. The parameters of other 
channels in the band were estimated similarly. We choose 
the channel from classification 3 as is shown in Figure3 to be 
analyzed. Given the measurements of the channel, we fitted 
the histogram of power by (1) with the initial value (-
51.7892, -57.2836, -75.6072) computed by the k-means 
algorithm. Figure5 shows the fitting result of the histogram 
of power. 

 

 
Figure 2.  Three-dimensional view of received powers 

 
Figure 3.  The number of different classifications 

 
Figure 4.  Histogram Plots from different types 

 
Figure 5.  Fitting result 

The parameters of the multi-peaks Gaussian fitting 
function is TABLEⅠ 

The thresholds of the given channel is in (19). Then we 
can get the observable sequences based on the thresholds. 
Relying on the measurements of the channel, we have used 
the algorithm described in Section Ⅱ and estimates the 
HMM parameters. The proposed algorithm was terminated if 
the relative difference in log-likelihood values of the last two 
iterations was smaller than10-4. 

TABLE I. PARAMETERS OF THE MULTI-PEAKS GAUSSIAN FITTING FUNCTION 

1 0.09261c =  1 75.99μ = −  1 0.4464σ =  

2 0.3559c =  2 57.17μ = −  2 0.2661σ =  

3 0.6306c =  3 52.38μ = −  3 0.3249σ =  

 
 

1 2 3

1 2 3

74.6492, 56.3721, 51.4016
77.3274, 57.9685, 53.3511

th th th
th th th
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The estimated HMM parameter set is shown in (20), (21) 

and (22), which is consistent with measurement plots.  
 

ˆ [1,0]π =                               (19) 
 

0.99 0.01ˆ
0.0011 0.9989
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               (20) 
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B. Channel State Estimation and Prediction 
We use the real spectrum measurement of the same given 

channel in another day to test our system. Since the state 
occupancy sequence for the real data is not known, it is 
necessary to apply our system to estimate the hidden state 
sequence as the real data first. The steps were carried out as 
follow: 

1) Generate a hidden state sequence 
{ }, 1, , ,T

t ts s t T s S= = ∈� � �…  using the estimated initial 

distribution π̂ and the transition matrix Â . 
2) Randomly select the same channel spectrum 

measurement of another day, and generate the observation 
sequence { }, 1, , , oT

t to o t T O= = ∈�� � … with the method 
proposed in Section Ⅱ. 

3) Re-estimate the parameter set λ�  of the channel 
from the observation sequence in Step 2). We obtained the 

parameter set λ�  : 
[1,0]π =�                               (22) 

 
0.9912 0.0088
0.0009 0.9991

A ⎡ ⎤
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0.9753 4.4904 18 0 0.0247

0 0.2699 0 0.7301
e

B
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= ⎢ ⎥
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Figure 6.  Comparison of Probability of Detection 

 

 
Figure 7.  Comparison of Probability of False Alarm 

 

 
Figure 8.  Comparison of Prediction Error 

4) Use the new estimated parameter set λ�  and the 

observation sequence To� to predict the state. 
5) Let dP  to be the probability of detection, faP to be 

the probability of false alarm and peP to be the probability of 
prediction error. The probability of false alarm indicates that 
when the idle channel is detected as busy.  

The values of dP , faP and peP is 

0.9961, 0.0112, 0.0046d fa peP P P= = =
 

We randomly selected eight channels in the classification 
with N=3 which are not always used. Comparing the 
approach proposed in this paper and a combination method 
of HMM and multivariate Gaussian distribution (MGD) in [7] 
to estimate the channel state, Figure6 , Figure7 and Figure8 
show the comparison of dP , faP and peP . The system 
proposed in this paper have very good performance. 

IV. CONCLUSION 
In this paper, we present an unsupervised prediction of 

channel state. Since the true channel states cannot be exactly 
known and the only information we may obtain is the 
observations of received signal strength. The method we 
proposed to classify the channels is more timesaving and 
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intelligent than ever before. Base on the classification and 
initial value, the model can be used for channel occupancy 
prediction. The experiments show good flexibility of the 
proposed system and evaluate the prediction performance.  
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