
The Fast Computation Methods for Extreme Learning Machine

Tao Dou
Dalian University of Technology, Faculty of Electronic

Information and Electrical Engineering, Computer
Application Technology

Dalian City, Liaoning Province Postal Code: 116024

Xu Zhou
Agricultural University of Hebei, the ministry of basic

course
Huanghua City, Hebei Province Postal Code: 061100

Abstract—The extreme learning machine (ELM) that is pro-
posed by Huang is designed based on single-hidden layer
feedforward neural networks (SLFNs), which can randomly
choose the parameters of hidden nodes and the output weights
gotten analytically. So it can get the solution fastly. However,
the learning time of ELM is mainly spent on calculating the
Moore-Penrose generalized inverse matrices of the hidden lay-
er output matrix. This paper mainly focuses on the effective
computation of the Moore-Penrose generalized inverse matri-
ces for ELM. Moreover, several methods are proposed, which
are tensor product matrix ELM (TPM-ELM), Geninv ELM
Numerical experiments show that both Geninv-ELM and
TPM-ELM are faster than other kinds of ELM and can reach
comparable generalization performance.

I. INTRODUCTION
Recently Huang Guang-bin et al. proposed extreme

learning machine that is a new single-hidden layer
feedforward neural networks (SLFNs). Because it can ran-
domly chooses hidden nodes and get the output weights of
SLFNs analytically. Theory and experiments prove that the
Extreme learning machine (ELM) has simple structure and
powerful approximation capability [1,3]. Huang Guang-bin
et al. show that ELM is one of the most popular neural net-
works especially it runs extremely fast. ELM not only can
get the smallest training error but also the get good general-
ization performance and it obtains the smallest norm of
weights when it compared to the traditional learning algo-
rithm on feedforward network. ELM can get well function
approximation from any finite set, Huang and Babri [4]
shows that a single-hidden layer feedforward neural net-
work (SLFNs) can learn N different observations if the
network has N hidden nodes whose activation function
must be nonlinear. Huang Guang-bin et al. prove that when
the activation functions are infinitely differentiable in the
hidden notes, we can randomly choose the hidden layer bi-
ases and the input weights of the single-hidden layer feed
forward neural network (SLFNs).

However, when dealing with large datasets, certain
problems arise, including the huge amount of memory re-
quired for storing the weights and bias matrix, so a lot of
varieties of ELM have been proposed by researchers for
solving both generalization performance and learning speed
problems in the past few years [2,5]. Such as error mini-
mized extreme learning machine, on line sequential extreme

learning machine, a structure-adjustable online learning
ELM are with quicker learning speed [7]. In the past two
decades, much work has been done about the approximation
capabilities of SLFNs [6]. A series of learning algorithms
have been proposed recently that referred to as incremental
extreme learning machines. The parameters of hidden node
and the input weights in the network are randomly chosen.
The output weights of the network can be determined ana-
lytically [8]. There are normally two heuristic approaches to
adaptive the number of hidden nodes in the network, either
destructive nodes method (usually called pruning nodes
method) [9]. Modify the structure of SLFNs: constructive
methods (usually called growing nodes methods)

Extreme learning machine (ELM) is a fast learning algo-
rithm that can be considered as a linear system. However,
calculating the hidden layer output matrix which actually is
the Moore-Penrose generalized inverse matrices that need
spending much time to get the solution. So this paper focus
on the learning speed of ELM about the computation of the
Moore-Penrose generalized inverse matrices. There are sev-
eral methods for computing the Moore-Penrose inverse ma-
trix [10], these methods may include orthogonalization
method, orthogonal projection, iterative method, and singu-
lar value decomposition (SVD) [11]. As we know, both the
orthogonalization and iterative method have their limita-
tions when using the searching and iteration in the learning
algorithm. The orthogonal projection method can be used
when TH H is nonsingular and † 1()T T−=H H H H which is also
used. However, the orthogonal projection method usually
perform worse, when the TH H is not nonsingular or tend
to be singular, thus the matrix decomposition techniques
can be used. The SVD has been used by some expert to cal-
culate the Moore-Penrose generalized inverse of the hidden
layer output matrix H in ELM. The SVD is very accurate
method has been proved but also time-consuming since it
requires a large mount of computational resources, especial-
ly in the case of dealing with large matrices.

Also, several methods for computing the Moore-Penrose
generalized inverse matrix by matrix decomposition tech-
niques have been generated in the recent contribution[12].
V.-N. Katsikis [14] provided a fast and reliable method to
calculate the Moore-Penrose generalized inverse and that
also can be used for large sparse matrices. Courrieu [15]
proposed a fast computation of Moore-Penrose generalized

2015 2nd International Conference on Intelligent Computing and Cognitive Informatics (ICICCI 2015)

© 2015. The authors - Published by Atlantis Press 55

inverse matrices based on a full rank Cholesky factoriza-
tion. Toutounian and Ataei [13] presented the CGS-MPi al-
gorithm which is based on parting the Moore-Penrose in-
verse matrices, and the method of conjugate Gram-Schmidt
process. They proved that this algorithm is efficient tool for
computing the Moore-Penrose inverse and it is a robust al-
gorithm especially dealing with rank deficient and large
sparse matrices. Vasilios [17] proposed a method based on
QR factorization, which can effective calculate the Moore-
Penrose inverse when the matrices are singular square ma-
trices or rectangular matrices.

In this paper, we focus on effective computation of the
Moore-Penrose generalized inverse matrices for ELM. Sev-
eral methods are proposed, which are tensor product matrix
ELM (TPM-ELM), QR factorization and Geninv ELM
(QR-ELM).

II. EXTREME LEARNING MACHINE
As we know that the single-hidden-layer neural net-

works are consisted of three layers: input nodes, hidden
layer and output nodes. The input nodes’ role is to pass sig-
nals to the hidden layer. And the hidden layer nodes are
consisted of activation function; The output layer nodes are
usually can be considered a simple linear function; In the
single hidden layer feed forward neural network, from input
layer to hidden layer are non-linear transformation and from
the hidden layer to the output layer transformation is linear,
that is, the output of the network hidden nodes are a linear
weighted sum.

The training data usually are (,)i ix t ,

1, 2, ,i N= and the samples are arbitrary distinct,

where 1 2[, , ,]T
i i i imt t t t= mR∈ m is the number of

output nodes, 1 2[, , ,]T
i i i inx x x x= nR∈ n is the

number of the sample attributes. N is the number of the
hidden nodes and the activation function is ()g x . We usu-
ally use mathematically modeled as

1 1

() () .
N L

i i i i i j i j
i i

g x g w x b oβ β
= =

= ⋅ + =∑ ∑

1, , .j N= the weight vector

1 2[, , ,]T
i i i inw w w w= which connecting the input nodes

with the i th hidden node. The weight vector

1 2[, , ,]T
i i i imβ β β β= which connecting the i th hid-

den node with the output nodes, and the threshold of the
i th hidden node is ib . i jw x⋅ is the inner product of the

weight iw and the threshold ib . That standard SLFNs

with N hidden nodes and the activation function is
()g x . The SLFNs can approximate these arbitrarily

N samples with zero error, that is,
1

0
N

j j
j

T t
=

− =∑ i.e. It

also can be showed as

1

() . 1, , .
N

i i j i j
i

g w x b t j Nβ
=

⋅ + = =∑ These N

equations can be written compactly as

H Tβ = Where

1 1 1(, , , , , , , ,)NN NH w w b b x x

1 1 1 1

1 1

() ()

() ()

N N

N NN N N N

g w x b g w x b

g w x b g w x b
×

⎡ ⎤⋅ + ⋅ +
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥⋅ + ⋅ +⎣ ⎦

1
T

T
N N m

β
β

β
×

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥⎣ ⎦

and
1
T

T
N N m

t
T

t
×

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥⎣ ⎦

Generally, training an SLFNs, we need find the optimal
ˆ ˆˆ , (1, ,),i iw b i N β= from the fellow:

1 1̂
ˆ ˆˆ ˆ(, , , , ,)N NH w w b b Tβ −

1 1, ,
min (, , , , ,)

i i
N Nw b

H w w b b T
β

β= −

H can be get from the gradient-based learning algo-

rithms which are usually searching the minimum value of
the formula H Tβ − . The input weights and the output

weights (,)i iw β and the biases parameters of the hidden
nodes, are usually get the best solution by iteratively adjust-

ed just as follow: 1
() .

()K K
E WW W

W
η−

∂
= −

∂
 In this equa-

tion η is the learning rate. Generally, The users get the
best solution by the BP learning algorithm.

ELM is proposed by Huang et al. based on SLFNs,
however, unlike the traditional SLFNs, when the activation
function in the hidden nodes is infinitely differentiable, the
input weights and the hidden nodes biases usually get ran-
domly. Differently, the traditional neural network, all of the
parameters of SLFNs need to be adjusted, but, in the ELM
learning algorithm, all of the parameters need not turn, such

2015 2nd International Conference on Intelligent Computing and Cognitive Informatics (ICICCI 2015)

© 2015. The authors - Published by Atlantis Press 56

as the input weights and the biases in the hidden nodes.
H is the hidden layer output matrix, which can be deter-
mined randomly at the beginning of learning, and it need
not be turned in the all of learning process. And the output
weights of the network is îβ which is usually get from the
smallest norm least squares solution of the formula
H Tβ = , the output weights †ˆ H Tβ = , and †H is in-
verse of matrix H , which is the Moore-penrose general-
ized inverse.

The ELM algorithm is simply summarized as follows:
Algorithm ELM: Generally the training set is:

{(,) | ,n
i i iX x t x R= ∈ , 1, , }m

it R i N∈ = , N is

the number of the samples, ()g x is the activation func-

tion, N is the number of hidden nodes.
Step 1: Get the input weights iw and the bias

, (1, ,)ib i N= which are all Randomly determined.

Step 2: Calculate H that is the hidden layer output
matrix.

Step 3: Solute the output weight β . Form calculating

the formula †
1. [, ,]T

NH T and T t tβ = = .
Finding the minimum norm least squares solution is

equivalent to calculating the Moore-Penrose generalized in-
verse of matrix.

III. FAST COMPUTATION METHODS FOR ELM

In this section, the matrix †H is calculated by matrix
decomposition techniques. We will propose several learning
algorithms, which are tensor product matrix ELM (TPM-
ELM), QR factorization and Geninv ELM (QR-ELM) Our
work is mainly based on the the traditional methods to cal-
culate the Moore-Penrose generalized inverse matrix [30-
33].

a) The product matrix ELM (TPM-ELM)
Definition 3.1. For each NR∈x ，and usually assume

that { }1,..., Le e and { }1,..., Lh h are two collections of or-
thonormal vectors and they are linearly independent vectors
of NR , L N< , respectively. The mapping : N NR R⊗ →e h
with ()() ,⊗ = 〈 〉e h x x e h .If every rank- L operator F can

be written in the form
1

L

i i
i

F
=

= ⊗∑e h . Then, F is called

the tensor product of the collec-
tions { }1,..., Le e and { }1,..., Lh h . The corresponding matrix
F can be written in the form

1[, , , , ,] N N
L R ×= ∈F h h 0 0 . F is called the tensor-

product matrix of the given collections.

Theorem 3.1. Let H be a Hilbert space. If

1

L

i i
i

F
=

= ⊗∑e h is a rank- L operator then its generalized in-

verse is also a rank-L operator and for each x ∈H , it is de-

fined by the relation †

1
()

L

i i
i
λ

=

= ∑F x x e ,

Where the functions iλ are the solution of an appropri-
ately defined L L× linear system.We proceed with compu-
ting the generalized inverse of a tensor-product matrix as
follows:

Assume that{ }1,..., Lh h are collections of linearly inde-

pendent vectors of NR , L N< ,

1[, ,] N L
L R ×= ∈H h h

1[, , , , ,] []L= =F h h 0 0 H 0 . N NR ×∈ For each
1, ,l N= , we solve the linear system

1

, () , , 1, ,
L

l i j l i j
j

i Lλ
=

〈 〉 = 〈 〉 =∑e h e h h

Have 1 2(), (),..., ()l l L lλ λ λe e e as a solution from the

above linear system. On the basis of Theorem 3.1
†

1

() ,
L

l j l j
j

λ
=

= ∑F e e e . 1, ,l N= Then the generalized in-

verse †F has the following form

1 1 1 2 1

2 1 2 2 2

†
†

1 2

() () ()
() () ()

() () ()
0 0 0

0 0 0

N

N

N N
L L L N R

λ λ λ
λ λ λ

λ λ λ ×

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟

⎡ ⎤⎜ ⎟
= = ∈⎢ ⎥⎜ ⎟

⎣ ⎦⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

e e e
e e e

H
F e e e

0

…
…

…
…

…

.

The TPM-ELM algorithm is summarized as follows:
Generally the training set is:

{(,) | ,n
i i iX x t x R= ∈ , 1, , }m

it R i N∈ = , N is

the number of the samples, ()g x is the activation func-
tion, L is the number of hidden nodes.

Step 1: Get the input weights iw and the bias

, (1, ,)ib i L= which are all Randomly determined.
Step 2: Calculate the Moore-Penrose generalized
inverse of matrix N LR ×∈H
if N L> , then T=C H H , † \ T=H C H
if L N> , then TC = HH , † \=H C H

2015 2nd International Conference on Intelligent Computing and Cognitive Informatics (ICICCI 2015)

© 2015. The authors - Published by Atlantis Press 57

Step 3: Solute the output weight β . Form calculating

the formula † .H Tβ = and 1[,...,]T N m
N R ×= ∈Τ t t .

\ T=Y C H is the solution to the linear system
T=CY H computed by Gaussian Elimination.

1 1 1 2 1

2 1 2 2 2†

1 2

() () ()
() () ()

() () ()

N

N L N

L L L N

R

λ λ λ
λ λ λ

λ λ λ

×

⎡ ⎤
⎢ ⎥
⎢ ⎥= = ∈
⎢ ⎥
⎢ ⎥
⎣ ⎦

e e e
e e e

Y H

e e e

.

b) The Full rank Cholesky factorization ELM (Geninv-

ELM)
Geninv-ELM provides a rapid method, which is based

on a known reverse order law and a full rank Cholesky fac-
torization. The computation time is substantially shorter,
particularly for large systems, and Geninv-ELM can be
used for rank deficient matrices. The method of computing
the Moore-Penrose inverse matrix is based on the work of
P. Courrieu [14].

The Geninv-ELM algorithm is summarized following:
The training set is {(,) | , ,n m

i i i iX R R= ∈ ∈x t x t
1,..., }i N= , the activation function we select the function

()g x , and the number of hidden nodes is L , and L N< .
Step 1: Randomly assign input weight iw and bias

ib (1,...,)i L= .
Step 2: Calculate the Moore-Penrose generalized inverse

of the matrix N LR ×∈H .
(1) T L LR ×∈H H , ()Trank r L= ≤H H .
(2) Utilize the full rank Cholesky factorization of

TH H , obtains a matrix S which satisfies T T=H H S S ,
where L LR ×∈S is a unique upper triangular matrix with
L r− zero rows.

(3) Remove the zero rows from S , obtains a ma-
trix T r LR ×∈R , ()rank r=R , which satisfies T T=S S RR ,
thus T T T= =H H S S RR .

(4) Calcu-
late † † 1 1() () () ()T T T T T− −= =H H RR R R R R R R .

Where T r rR ×∈R R .
Step 3: Calculate the output weight L mRβ ×∈ .

† † 1 1() () ()T T T T Tβ − −= = =H T H H T R R R R R R H T ,
where 1[,...,]T N m

N R ×= ∈Τ t t .
The advantage of Geninv-ELM is that computation of

the L L× inverse matrix is changed into one of the r r× in-
verse matrix (r L≤).

IV. PERFORMANCE EVALUATION
In this part, we compare the performance of the compu-

tation of Moore-Penrose generalized inverse matrices used
in ELM on the eight datasets from the UCI. The environ-
ment of implementing of all these algorithm is: in
MATLAB7.1, double 2.8 GHz, 1G memory and the CPU is
Pentium 4. The activation function for all models is sigmoid
function () 1/(1 exp())g = + −x x , In the real-world prob-
lems, the attributes of all the training set and testing set
were scaled to [-1, 1]. We conduct the performance compar-
ison of the methods for eight real problems: Digit, DNA,
Vehicle, Page, Sat, Shuttle, Usps and Letter. All the datasets
are from the UCI databases[17]. The numbers of attributes,
classes, samples for training and testing, and hidden nodes
are shown in Table I.

TABLE I. SPECIFICATION OF THE REAL-WORLD PROBLEMS.

Datasets # at-
tributes

Classes

Training

Testing

hidden
nodes

Digit 64 10 2810 2810 400
DNA 180 3 3457 1729 400
Letter 16 26 10000 10000 400
Page 10 5 2736 2737 250
Sat 36 7 3217 3218 400
Shuttle 9 7 29000 29000 250
Usps 256 10 6198 3100 400
Vehicle 18 4 423 423 150

For the TPM-ELM, Geninv-ELM methods, the number

of hidden nodes was set 50, 100, 150, 200, 250, 300, 350,
and 400. We will present the average learning results on
these benchmark datasets by using the above algorithms
with 10-fold cross-validation. The testing accuracy of the
algorithms in eight datasets with different hidden nodes is
reported in Fig. 1-8 From the fluctuating curves, we have
obtained values of L selected for each application. As ob-
served from Fig. 1-8, we can get the conclusion if the hid-
den nodes are too few or too much the generalization per-
formance of ELM will tend to be worse. Otherwise, the
ELM algorithm get better perform on the moderate hidden
nodes.

We compare the performance of methods (TPM-ELM,
Geninv-ELM) in the real-world problems. The attributes of
datasets were scaled to [-1, 1]. The sigmoid function was
used as an activation function for the all algorithm. With
10-fold cross-validation were conducted for all the ELM al-
gorithms and the average results are shown in Tables 2 and
Table III. Table III shows the performance comparison of
testing accuracy of the six methods in the real-world prob-
lems. As observed from the Table II, general speaking, all
of methods obtain similar testing accuracy, Geninv-ELM is

2015 2nd International Conference on Intelligent Computing and Cognitive Informatics (ICICCI 2015)

© 2015. The authors - Published by Atlantis Press 58

slightly lower than TPM-ELM and SVD-ELM in many cas-
es.

TABLE II. THE AVERAGE TESTING ACCURACY OF THE METHODS IN THE RE-
AL-WORLD PROBLEMS.

Data sets hidden
nodes

TPM-
ELM

Geninv-
ELM

SVD-
ELM

Digit 400 0.9779 0.9826 0.98084
DNA 400 0.9410 0.9371 0.9323
Letter 400 0.8734 0.8749 0.8752

Sat 400 0.8875 0.8888 0.8900
Usps 400 0.9484 0.9500 0.9500

Vehicle 150 0.8014 0.8061 0.8180
Shuttle 250 0.7301 0.6736 0.7366
Page 250 0.9536 0.9532 0.9529

TABLE III THE AVERAGE TRAINING TIME OF THE METHODS IN THE REAL-
WORLD PROBLEMS.

Data sets hidden nodes TPM-
ELM

Geninv-
ELM

SVD-
ELM

Digit 400 1.2172 1.0313 2.5313
DNA 400 0.6240 0.7956 1.8876
Letter 400 3.3750 3.5781 11.875

Sat 400 0.9063 1.1875 2.7500
Usps 400 2.1250 2.4063 5.2656

Vehicle 150 0.0156 0.0313 0.0781
Shuttle 250 2.0748 4.0781 10.5313
Page 250 0.5781 0.5938 1.9531

Table III shows the performance comparison of average

training time of the methods in the real-world problems.
From the Table 3, the learning speed is significantly differ-
ent, both TPM-ELM and Geninv-ELM obtain comparable
performance to other methods with much faster learning
speed in all cases. TPM-ELM and Geninv-ELM learn up to
2-5 times faster than SVD-ELM.

Figure 1. The testing accuracy of the three algorithms in Digit with differ-

ent hidden nodes

Figure 2. The testing accuracy of the three algorithms in DNA with differ-

ent hidden nodes.

Figure 3. The testing accuracy of the three algorithms in Letter with differ-

ent hidden nodes.

2015 2nd International Conference on Intelligent Computing and Cognitive Informatics (ICICCI 2015)

© 2015. The authors - Published by Atlantis Press 59

Figure 4. The testing accuracy of the three algorithms in Sat with different

hidden nodes.

Figure 5. The testing accuracy of the three algorithms in Shuttle with dif-

ferent hidden nodes.

Figure 6. The testing accuracy of the three algorithms in Usps with differ-

ent hidden nodes.

Figure 7. The testing accuracy of the three algorithms in Page with differ-

ent hidden nodes.

Figure 8. The testing accuracy of three algorithms in Vechicle with differ-

ent hidden nodes.

REPFERENCES
[1] G.-B. Huang, Q.-Y. Zhu, C.-K. Siew, Extreme learning machine: theory

and applications, Neurocomputing 70 (1–3) (2006) 489–501.
[2] P.-L. Bartlett, The sample complexity of pattern classification with neu-

ral networks: the size of the weights is more important than the size
of the network, IEEE Trans. Inf. Theory 44 (2) (1998) 525–536.

[3] G.-B. Huang, D.-H. Wang, Y. Lan, Extreme learning machines: a sur-
vey, Int J Mach Learn Cybern 2(2) (2011) 107–122.

[4] G.-B. Huang, H.-A. Babri, Upper bounds on the number of hidden neu-
rons in feedforward networks with arbitrary bounded nonlinear acti-
vation functions, IEEE Trans. Neural Networks 9 (1) (1998) 224–
229.

[5] G.-B. Huang, H.-M. Zhou, X.-J. Ding, R. Zhang, Extreme Learning
Machine for Regression and Multiclass Classification, IEEE Transac-
tions on Systems, Man, and Cybernetics-Part B: Cybernetics 42(2)
(2012) 513-529.

[6] R. Zhang, Y. Lan, G.-B. Huang, Z.-B. Xu, Universal Approximation of
Extreme Learning Machine with Adaptive Growth of Hidden
Node, IEEE Transactions on Neural Networks and Learning Systems
23(2) (2012) 365–371.

[7] N.-Y. Liang, G.-B. Huang, P. Saratchandran, N. Sundararajan, A Fast
and Accurate Online Sequential Learning Algorithm for Feedforward
Networks, IEEE Trans. Neural Netw 17(6) (2006) 1411–1423.

2015 2nd International Conference on Intelligent Computing and Cognitive Informatics (ICICCI 2015)

© 2015. The authors - Published by Atlantis Press 60

[8] G.-B. Huang, L. Chen, Enhanced random search based incremental ex-
treme learning machine, Neural Computing 71(2008) 3460–3468.

[9] G.-B. Huang, L. Chen, Convex incremental extreme learningmachine.
Neurocomputing 70(16–18) (2007) 3056–3062

[10] A. Ben-Israel, T.-N.-E. Grenville, Generalized Inverses: Theory and
Applications. Springer-Verlag. Berlin 2002.

[11] G.-H. Golub, C.-F.-V. Loan, Matrix Computations, thirded., Johns
Hopkins University Press, MD, 1996.

[12] W. Guo, T. Huang, Method of elementary transformation to compute
Moore-Penrose inverse, Applied Mathematics and Computation
216(5) (2010)1614–1617.

[13] F. Toutounian, A. Ataei, A New Method for Computing Moore-
Penrose Inverse Matrices, Journal of Computational and Applied
Mathematics 228(1) (2009)412–417.

[14] V.-N. Katsikis, D. Pappas, Fast computing of the Moore-Penrose in-
verse matrix, Electronic Journal of Linear Algebra 17 (2008) 637–
650.

[15] P. Courrieu, Fast Computation of Moore-Penrose Inverse Matrices, In:
Neural Information Processing- Letters and Reviews 8(2) (2005) 25–
29.

[16] A. Frank, A. Asuncion,UCI Machine Learning Repository, 2010. URL
<http://archive.ics.uci.edu/ml>.

[17] N. Vasilios, Katsikis, P. Dimitrios, P. Athanassios, An improved
method for the computation of the Moore-Penrose inverse matrix,
Applied Mathematics and Computation 217 (2011) 9828–9834.

2015 2nd International Conference on Intelligent Computing and Cognitive Informatics (ICICCI 2015)

© 2015. The authors - Published by Atlantis Press 61

