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Abstract—The extreme learning machine (ELM) that is pro-
posed by Huang is designed based on single-hidden layer 
feedforward neural networks (SLFNs), which can randomly 
choose the parameters of hidden nodes and the output weights 
gotten analytically. So it can get the solution fastly. However, 
the learning time of ELM is mainly spent on calculating the 
Moore-Penrose generalized inverse matrices of the hidden lay-
er output matrix. This paper mainly focuses on the effective 
computation of the Moore-Penrose generalized inverse matri-
ces for ELM. Moreover, several methods are proposed, which 
are tensor product matrix ELM (TPM-ELM), Geninv ELM 
Numerical experiments show that both Geninv-ELM and 
TPM-ELM are faster than other kinds of ELM and can reach 
comparable generalization performance. 

I. INTRODUCTION 
Recently Huang Guang-bin et al. proposed extreme 

learning machine that is a new single-hidden layer 
feedforward neural networks (SLFNs). Because it can ran-
domly chooses hidden nodes and get the output weights of 
SLFNs analytically. Theory and experiments prove that the 
Extreme learning machine (ELM) has simple structure and 
powerful approximation capability [1,3]. Huang Guang-bin 
et al. show that ELM is one of the most popular neural net-
works especially it runs extremely fast. ELM not only can 
get the smallest training error but also the get good general-
ization performance and it obtains the smallest norm of 
weights when it compared to the traditional learning algo-
rithm on feedforward network. ELM can get well function 
approximation from any finite set, Huang and Babri [4] 
shows that a single-hidden layer feedforward neural net-
work (SLFNs) can learn N different observations if the 
network has N hidden nodes whose activation function 
must be nonlinear. Huang Guang-bin et al. prove that when 
the activation functions are infinitely differentiable in the 
hidden notes, we can randomly choose the hidden layer bi-
ases and the input weights of the single-hidden layer feed 
forward neural network (SLFNs).  

However, when dealing with large datasets, certain 
problems arise, including the huge amount of memory re-
quired for storing the weights and bias matrix, so a lot of 
varieties of ELM have been proposed by researchers for 
solving both generalization performance and learning speed 
problems in the past few years [2,5]. Such as error mini-
mized extreme learning machine, on line sequential extreme 

learning machine, a structure-adjustable online learning 
ELM are with quicker learning speed [7]. In the past two 
decades, much work has been done about the approximation 
capabilities of SLFNs [6]. A series of learning algorithms 
have been proposed recently that referred to as incremental 
extreme learning machines. The parameters of hidden node 
and the input weights in the network are randomly chosen. 
The output weights of the network can be determined ana-
lytically [8]. There are normally two heuristic approaches to 
adaptive the number of hidden nodes in the network, either 
destructive nodes method (usually called pruning nodes 
method) [9]. Modify the structure of SLFNs: constructive 
methods (usually called growing nodes methods) 

Extreme learning machine (ELM) is a fast learning algo-
rithm that can be considered as a linear system. However, 
calculating the hidden layer output matrix which actually is 
the Moore-Penrose generalized inverse matrices that need 
spending much time to get the solution. So this paper focus 
on the learning speed of ELM about the computation of the 
Moore-Penrose generalized inverse matrices. There are sev-
eral methods for computing the Moore-Penrose inverse ma-
trix [10], these methods may include orthogonalization 
method, orthogonal projection, iterative method, and singu-
lar value decomposition (SVD) [11]. As we know, both the 
orthogonalization and iterative method have their limita-
tions when using the searching and iteration in the learning 
algorithm. The orthogonal projection method can be used 
when TH H is nonsingular and † 1( )T T−=H H H H which is also 
used. However, the orthogonal projection method usually 
perform worse, when the TH H  is not nonsingular or tend 
to be singular, thus the matrix decomposition techniques 
can be used. The SVD has been used by some expert to cal-
culate the Moore-Penrose generalized inverse of the hidden 
layer output matrix H  in ELM. The SVD is very accurate 
method has been proved but also time-consuming since it 
requires a large mount of computational resources, especial-
ly in the case of dealing with large matrices. 

Also, several methods for computing the Moore-Penrose 
generalized inverse matrix by matrix decomposition tech-
niques have been generated in the recent contribution[12]. 
V.-N. Katsikis [14] provided a fast and reliable method to 
calculate the Moore-Penrose generalized inverse and that 
also can be used for large sparse matrices. Courrieu [15] 
proposed a fast computation of Moore-Penrose generalized 
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inverse matrices based on a full rank Cholesky factoriza-
tion. Toutounian and Ataei [13] presented the CGS-MPi al-
gorithm which is based on parting the Moore-Penrose in-
verse matrices, and the method of conjugate Gram-Schmidt 
process. They proved that this algorithm is efficient tool for 
computing the Moore-Penrose inverse and it is a robust al-
gorithm especially dealing with rank deficient and large 
sparse matrices. Vasilios [17] proposed a method based on 
QR factorization, which can effective calculate the Moore-
Penrose inverse when the matrices are singular square ma-
trices or rectangular matrices.  

In this paper, we focus on effective computation of the 
Moore-Penrose generalized inverse matrices for ELM. Sev-
eral methods are proposed, which are tensor product matrix 
ELM (TPM-ELM), QR factorization and Geninv ELM 
(QR-ELM). 

II. EXTREME LEARNING MACHINE 
As we know that the single-hidden-layer neural net-

works are consisted of three layers: input nodes, hidden 
layer and output nodes. The input nodes’ role is to pass sig-
nals to the hidden layer. And the hidden layer nodes are 
consisted of activation function; The output layer nodes are 
usually can be considered a simple linear function; In the 
single hidden layer feed forward neural network, from input 
layer to hidden layer are non-linear transformation and from 
the hidden layer to the output layer transformation is linear, 
that is, the output of the network hidden nodes are a linear 
weighted sum. 

The training data usually are ( , )i ix t , 

1, 2, ,i N= and the samples are arbitrary distinct, 

where 1 2[ , , , ]T
i i i imt t t t= mR∈  m  is the number of 

output nodes, 1 2[ , , , ]T
i i i inx x x x= nR∈  n is the 

number of the sample attributes. N  is the number of the 
hidden nodes and the activation function is ( )g x . We usu-
ally use mathematically modeled as 

1 1

( ) ( ) .
N L

i i i i i j i j
i i

g x g w x b oβ β
= =

= ⋅ + =∑ ∑  

1, , .j N=  the weight vector 

1 2[ , , , ]T
i i i inw w w w= which connecting the input nodes 

with the i th hidden node. The weight vector 

1 2[ , , , ]T
i i i imβ β β β=  which connecting the i th hid-

den node with the output nodes, and the threshold of the 
i th hidden node is ib . i jw x⋅ is the inner product of the 

weight iw  and the threshold ib . That standard SLFNs 

with N  hidden nodes and the activation function is 
( )g x . The SLFNs can approximate these arbitrarily 

N samples with zero error, that is, 
1

0
N

j j
j

T t
=

− =∑  i.e. It 

also can be showed as 

1

( ) . 1, , .
N

i i j i j
i

g w x b t j Nβ
=

⋅ + = =∑  These N  

equations can be written compactly as 
 
H Tβ =  Where  
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Generally, training an SLFNs, we need find the optimal 
ˆ ˆˆ , ( 1, , ),i iw b i N β=  from the fellow: 

 

1 1̂
ˆ ˆˆ ˆ( , , , , , )N NH w w b b Tβ −

1 1, ,
min ( , , , , , )

i i
N Nw b

H w w b b T
β

β= −  

 
H  can be get from the  gradient-based learning algo-

rithms which are usually searching the minimum value of 
the formula H Tβ − . The input weights and the output 

weights ( , )i iw β  and the biases parameters of the hidden 
nodes, are usually get the best solution by iteratively adjust-

ed just as follow: 1
( ) .

( )K K
E WW W

W
η−

∂
= −

∂
 In this equa-

tion η  is the learning rate. Generally, The users get the 
best solution by the BP learning algorithm. 

ELM is proposed by Huang et al. based on SLFNs, 
however, unlike the traditional SLFNs, when the activation 
function in the hidden nodes is infinitely differentiable, the 
input weights and the hidden nodes biases usually get ran-
domly. Differently, the traditional neural network, all of the 
parameters of SLFNs need to be adjusted, but, in the ELM 
learning algorithm, all of the parameters need not turn, such 
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as the input weights and the biases in the hidden nodes. 
H is the hidden layer output matrix, which can be deter-
mined randomly at the beginning of learning, and it need 
not be turned in the all of learning process. And the output 
weights of the network is îβ  which is usually get from the 
smallest norm least squares solution of  the formula 
H Tβ = , the output weights †ˆ H Tβ = , and †H  is in-
verse of matrix H , which is the Moore-penrose general-
ized inverse. 

The ELM algorithm is simply summarized as follows: 
Algorithm ELM: Generally the training set is:  

{( , ) | ,n
i i iX x t x R= ∈ , 1, , }m

it R i N∈ = , N is 

the number of the samples, ( )g x  is the activation func-

tion, N  is the number of hidden nodes. 
Step 1: Get the input weights iw and the bias 

, ( 1, , )ib i N=  which are all Randomly determined. 

Step 2: Calculate H  that is the hidden layer output 
matrix. 

Step 3: Solute the output weight β . Form calculating 

the formula †
1. [ , , ]T

NH T and T t tβ = = . 
Finding the minimum norm least squares solution is 

equivalent to calculating the Moore-Penrose generalized in-
verse of matrix.  

III. FAST COMPUTATION METHODS FOR ELM 

In this section, the matrix †H is calculated by matrix 
decomposition techniques. We will propose several learning 
algorithms, which are tensor product matrix ELM (TPM-
ELM), QR factorization and Geninv ELM (QR-ELM) Our 
work is mainly based on the the traditional methods to cal-
culate the Moore-Penrose generalized inverse matrix [30-
33].  

a)  The product matrix ELM (TPM-ELM ) 
Definition 3.1. For each NR∈x ，and usually assume 

that { }1,..., Le e and { }1,..., Lh h are two collections of or-
thonormal vectors and they are linearly independent vectors 
of NR , L N< , respectively. The mapping : N NR R⊗ →e h  
with ( )( ) ,⊗ = 〈 〉e h x x e h .If every rank- L operator F can 

be written in the form 
1

L

i i
i

F
=

= ⊗∑e h . Then, F  is called 

the tensor product of the collec-
tions { }1,..., Le e and { }1,..., Lh h . The corresponding matrix 
F can be written in the form 

1[ , , , , , ] N N
L R ×= ∈F h h 0 0 . F is called the tensor-

product matrix of the given collections. 

Theorem 3.1. Let H  be a Hilbert space. If 

1

L

i i
i

F
=

= ⊗∑e h is a rank- L operator then its generalized in-

verse is also a rank-L operator and for each x ∈H , it is de-

fined by the relation †

1
( )

L

i i
i
λ

=

= ∑F x x e , 

Where the functions iλ are the solution of an appropri-
ately defined L L× linear system.We proceed with compu-
ting the generalized inverse of a tensor-product matrix as 
follows: 

Assume that{ }1,..., Lh h are collections of linearly inde-

pendent vectors of NR , L N< ,  
 

1[ , , ] N L
L R ×= ∈H h h

1[ , , , , , ] [ ]L= =F h h 0 0 H 0 . N NR ×∈  For each 
1, ,l N= , we solve the linear system 

1

, ( ) , , 1, ,
L

l i j l i j
j

i Lλ
=

〈 〉 = 〈 〉 =∑e h e h h       

 
Have 1 2( ), ( ),..., ( )l l L lλ λ λe e e as a solution from the 

above linear system. On the basis of Theorem 3.1 
†

1

( ) ,
L

l j l j
j

λ
=

= ∑F e e e . 1, ,l N=  Then the generalized in-

verse †F  has the following form 
 

1 1 1 2 1

2 1 2 2 2

†
†

1 2

( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )
0 0 0

0 0 0

N

N

N N
L L L N R

λ λ λ
λ λ λ

λ λ λ ×

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟

⎡ ⎤⎜ ⎟
= = ∈⎢ ⎥⎜ ⎟

⎣ ⎦⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

e e e
e e e

H
F e e e

0

…
…

…
…

…

.  

 
The TPM-ELM algorithm is summarized as follows: 
Generally the training set is:  

{( , ) | ,n
i i iX x t x R= ∈ , 1, , }m

it R i N∈ = , N is 

the number of the samples, ( )g x  is the activation func-
tion, L  is the number of hidden nodes. 

Step 1: Get the input weights iw and the bias 

, ( 1, , )ib i L=  which are all Randomly determined. 
Step 2: Calculate the Moore-Penrose generalized 
inverse of matrix N LR ×∈H  
if N L> , then T=C H H , † \ T=H C H  
if L N> , then TC = HH , † \=H C H   
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Step 3: Solute the output weight β . Form calculating 

the formula † .H Tβ = and 1[ ,..., ]T N m
N R ×= ∈Τ t t . 

\ T=Y C H  is the solution to the linear system 
T=CY H  computed by Gaussian Elimination. 

 
1 1 1 2 1

2 1 2 2 2†

1 2

( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )

N

N L N

L L L N

R

λ λ λ
λ λ λ

λ λ λ

×

⎡ ⎤
⎢ ⎥
⎢ ⎥= = ∈
⎢ ⎥
⎢ ⎥
⎣ ⎦

e e e
e e e

Y H

e e e

. 

 
b) The Full rank Cholesky factorization ELM (Geninv-

ELM) 
Geninv-ELM provides a rapid method, which is based 

on a known reverse order law and a full rank Cholesky fac-
torization. The computation time is substantially shorter, 
particularly for large systems, and Geninv-ELM can be 
used for rank deficient matrices. The method of computing 
the Moore-Penrose inverse matrix is based on the work of 
P. Courrieu [14]. 

The Geninv-ELM algorithm is summarized following: 
The training set is {( , ) | , ,n m

i i i iX R R= ∈ ∈x t x t  
1,..., }i N= , the activation function we select the function 

( )g x , and the number of hidden nodes is L , and L N< . 
Step 1: Randomly assign input weight iw  and bias 

ib ( 1,..., )i L= . 
Step 2: Calculate the Moore-Penrose generalized inverse 

of the matrix N LR ×∈H . 
(1) T L LR ×∈H H , ( )Trank r L= ≤H H . 
(2) Utilize the full rank Cholesky factorization of 

TH H , obtains a matrix S  which satisfies T T=H H S S , 
where L LR ×∈S is a unique upper triangular matrix with 
L r−  zero rows. 

(3) Remove the zero rows from S , obtains a ma-
trix T r LR ×∈R , ( )rank r=R , which satisfies T T=S S RR , 
thus T T T= =H H S S RR . 

(4) Calcu-
late † † 1 1( ) ( ) ( ) ( )T T T T T− −= =H H RR R R R R R R .  

Where T r rR ×∈R R . 
Step 3: Calculate the output weight L mRβ ×∈ . 

† † 1 1( ) ( ) ( )T T T T Tβ − −= = =H T H H T R R R R R R H T , 
where 1[ ,..., ]T N m

N R ×= ∈Τ t t . 
The advantage of Geninv-ELM is that computation of 

the L L× inverse matrix is changed into one of the r r× in-
verse matrix ( r L≤ ).  

IV. PERFORMANCE EVALUATION 
In this part, we compare the performance of the compu-

tation of Moore-Penrose generalized inverse matrices used 
in ELM on the eight datasets from the UCI. The environ-
ment of implementing of all these algorithm is: in 
MATLAB7.1, double 2.8 GHz, 1G memory and the CPU is 
Pentium 4. The activation function for all models is sigmoid 
function ( ) 1/(1 exp( ))g = + −x x , In the real-world prob-
lems, the attributes of  all the training set and testing set 
were scaled to [-1, 1]. We conduct the performance compar-
ison of the methods for eight real problems: Digit, DNA, 
Vehicle, Page, Sat, Shuttle, Usps and Letter. All the datasets 
are from the UCI databases[17]. The numbers of attributes, 
classes, samples for training and testing, and hidden nodes 
are shown in Table I.  

TABLE I. SPECIFICATION OF THE REAL-WORLD PROBLEMS. 

Datasets # at-
tributes 

# 
Classes 

# 
Training 

# 
Testing

# 
hidden 
nodes 

Digit 64 10 2810 2810 400 
DNA 180 3 3457 1729 400 
Letter 16 26 10000 10000 400 
Page 10 5 2736 2737 250 
Sat 36 7 3217 3218 400 
Shuttle 9 7 29000 29000 250 
Usps 256 10 6198 3100 400 
Vehicle 18 4 423 423 150 

 
For the TPM-ELM, Geninv-ELM methods, the number 

of hidden nodes was set 50, 100, 150, 200, 250, 300, 350, 
and 400. We will present the average learning results on 
these benchmark datasets by using the above algorithms 
with 10-fold cross-validation.  The testing accuracy of the 
algorithms in eight datasets with different hidden nodes is 
reported in Fig. 1-8 From the fluctuating curves, we have 
obtained values of L selected for each application. As ob-
served from Fig. 1-8, we can get the conclusion if the hid-
den nodes are too few or too much the generalization per-
formance of ELM will tend to be worse. Otherwise, the 
ELM algorithm get better perform on the moderate hidden 
nodes.  

We compare the performance of methods (TPM-ELM, 
Geninv-ELM) in the real-world problems. The attributes of 
datasets were scaled to [-1, 1]. The sigmoid function was 
used as an activation function for the all algorithm. With 
10-fold cross-validation were conducted for all the ELM al-
gorithms and the average results are shown in Tables 2 and 
Table III. Table III shows the performance comparison of 
testing accuracy of the six methods in the real-world prob-
lems. As observed from the Table II, general speaking, all 
of methods obtain similar testing accuracy, Geninv-ELM is 
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slightly lower than TPM-ELM and SVD-ELM in many cas-
es. 

 

TABLE II. THE AVERAGE TESTING ACCURACY OF THE METHODS IN THE RE-
AL-WORLD PROBLEMS. 

Data sets hidden   
nodes 

TPM- 
ELM 

Geninv- 
ELM 

SVD- 
ELM 

Digit 400 0.9779 0.9826 0.98084 
DNA 400 0.9410 0.9371 0.9323 
Letter 400 0.8734 0.8749 0.8752 

Sat 400 0.8875 0.8888 0.8900 
Usps 400 0.9484 0.9500 0.9500 

Vehicle 150 0.8014 0.8061 0.8180 
Shuttle 250 0.7301 0.6736 0.7366 
Page 250 0.9536 0.9532 0.9529 

 

TABLE III THE AVERAGE TRAINING TIME OF THE METHODS IN THE REAL-
WORLD PROBLEMS. 

Data sets hidden nodes TPM- 
ELM 

Geninv- 
ELM 

SVD- 
ELM 

Digit 400 1.2172 1.0313 2.5313 
DNA 400 0.6240 0.7956 1.8876 
Letter 400 3.3750 3.5781 11.875 

Sat 400 0.9063 1.1875 2.7500 
Usps 400 2.1250 2.4063 5.2656 

Vehicle 150 0.0156 0.0313 0.0781 
Shuttle 250 2.0748 4.0781 10.5313 
Page 250 0.5781 0.5938 1.9531 
 
Table III shows the performance comparison of average 

training time of the methods in the real-world problems. 
From the Table 3, the learning speed is significantly differ-
ent, both TPM-ELM and Geninv-ELM obtain comparable 
performance to other methods with much faster learning 
speed in all cases. TPM-ELM and Geninv-ELM learn up to 
2-5 times faster than SVD-ELM.  

 

 
Figure 1. The testing accuracy of the three algorithms in Digit with differ-

ent hidden nodes 

 

 
Figure 2. The testing accuracy of the three algorithms in DNA with differ-

ent hidden nodes. 

 

 
Figure 3. The testing accuracy of the three algorithms in Letter with differ-

ent hidden nodes. 
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Figure 4. The testing accuracy of the three algorithms in Sat with different 

hidden nodes. 

 

 
Figure 5. The testing accuracy of the three algorithms in Shuttle with dif-

ferent hidden nodes. 

 

 
Figure 6. The testing accuracy of the three algorithms in Usps with differ-

ent hidden nodes. 

 
Figure 7. The testing accuracy of the three algorithms in Page with differ-

ent hidden nodes. 

 

 
Figure 8. The testing accuracy of three algorithms in Vechicle with differ-

ent hidden nodes. 
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