
LittleC.js: A Lightweight, Minimal, Extensible, and Embeddable JavaScript
Implementation of the C Programming Language

Stefano Federici
University of Cagliari, Cagliari, Italy

Abstract—Visual block languages have introduced new ways
of learning computer languages. New Integrated development
environments (IDEs) for standard programming languages
such as C or SQL have been developed, derived from block
languages and based on the metaphor of building blocks. New
online IDEs, mostly used in online courses, have then made
programming with standard, text-based programming
languages such as C or Java, as easy as possible. Nonetheless, a
gap still exists between learning computer programming in a
Visual environment based on the block metaphor and a
standard environment for a text-based programming
language. In this paper, we propose a lightweight integrated
development environment, developed for an Introductory
Computer Programming course at the Faculty of Engineering
of Cagliari, which can be used to gradually introduce students
to the C programming language. The tool can be easily
embedded in online resources that can also be accessed via
mobile devices.

I. INTRODUCTION
Computer programming is not a trivial task. This is

clearly demonstrated by the large number of dropouts in
university courses majoring in computer science. In order to
make this task less painful, many efforts have been done.
The availability of online, integrated environments where
programs can be created, run and compiled on the web has
had a great surge in the last decade. Therefore, when
designing a course on computer programming, students can
operate on a development environment that is easily
accessible from everywhere and in which they can
interactively assess the progress or their learning. However,
if using online environments for standard programming
languages is a good choice for advanced students, it can be
of little help for introductory courses on computer
programming. Learning what is behind even the simplest C
program and then being able to write it and make it work
without much struggling is beyond the wills of many
university students (Fig. 1).

#include <stdio.h>
int main() {
 printf("Hello, world!\n");
 return;
}

Figure 1. The simple “Hello, world” program written in C.

To overcome the problems associated to learning a
programming language, several excellent educational

development environments have been designed in order to
introduce students to the main concepts of computer
programming by means of block languages such as Scratch
(Resnick et al, 2009) or BYOB (Harvey & Monig, 100)
(Fig. 2).

Figure 2. “Hello, world!” program built in Scratch.

Indeed, by using a block language, students do not have
to learn and use unnecessary contextual elements that they
do not immediately understand and can completely forget
about syntactic errors -something that they feel as being
frustrating and that causes many dropouts in computer
programming courses- as they have just to snap together a
few meaningful blocks. In order to make the transition to a
standard programming language as smooth as possible,
these environments (in particular BYOB) have then been
extended in order to allow to run -meaningful subsets of-
standard programming languages, such as C (Federici,
2009), in form of a block language (Fig. 3).

Figure 3. “Hello, world!” written in C as a block language.

Furthermore, to make these environments widespread,
they have been recently redesigned by allowing them to run
inside standard web browsers (Budger, 2014; Garcia et al.
2012; Federici & Gola, 2015). By means of these new

2015 2nd International Conference on Intelligent Computing and Cognitive Informatics (ICICCI 2015)

© 2015. The authors - Published by Atlantis Press 67

online versions, users can now avoid all problems such as
downloading, installing and setting up the environments.
For this very reason those newer environments can today be
fruitfully used in online courses on introductory computer
programming. Nevertheless, their usage is still somewhat
limited in scope, as they do not fully cover all the needs of
new learners of computer programming.

II. FROM BLOCK LANGUAGES TO TEXT BASED
ENVIRONMENTS

Indeed, after the first introductory steps, students, and
especially university students, must finally cope with
standard text-based development environments.

#include <stdio.h>
int main() {
 int n, i;

 scanf("%d", &n);
 i = 1;
 while (i<=n) {
 printf("%d", i);
 i = i + 1;
 }
 return;
}

Figure 4. C program that writes the first n integers.

scanf(n);
i = 1;
while (i<=n) {
 printf(i);
 i = i + 1;
}

Figure 5. Simplified C program that writes the first n integers.

Hopefully, after having grasped the basic concepts of
computer programming by means of a special purpose
block language such as Scratch or Snap, and having been
hopefully introduced to standard languages in a smoother
way by means of the block version of those languages
supported by BloP (Federici & Gola, 2015), they still have
to move to real environments for standard programming
languages. What they have to learn at this stage is mainly
the ability to write syntactically correct programs,
something that, as we have seen, using block languages can
be instead completely ignored.

Facing this problem in a standard development
environment is not easy. Therefore, usually teachers prefer
to gradually introduce the elements of the language. For
example, in the Introductory Computer Programming
course at the Faculty of Engineering of the University of
Cagliari, instead of starting by introducing libraries,
variable declaration, and complex I/O functions of the C
programming language, teachers introduce these concepts
at a later stage, after having introduced and discussed at
length the general syntax of the language. Therefore,

instead of writing a program what fully works in a standard
compiler or interpreter (Fig. 4), they start with a simplified
version of the program (Fig. 5).

III. INTEGRATED DEVELOPMENT ENVIRONMENTS FOR
ONLINE COURSE

Excellent online development environments are
available for a low monthly fee, such as for example
http://compilr.com. Other environments, with less features,
are available for free (http://codepad.org,
http://www.tutorialspoint.com/codingground.htm).

Usually these environments are based on web interfaces
that have added to standard compilers or interpreters
running on a webserver. By using those environments,
designer of computer programming courses -and especially
of online courses or courses equipped of online resources-
must constantly refer to external resources and are then not
able to embed interactive content inside their resources.
Moreover, they must use the IDE as it is, without the
possibility of adding a step-wise process that will make
students able to gradually learn the syntax of the language.

A. Embeddable IDEs and Languages
Several very nice lightweight tools have been designed

in order to build embeddable interactive content inside
online courses about Python, Java, and JavaScript (Guo,
2013). These tools, running on a server, can be embedded
inside online course modules and can be also customized
and adapted by course designers to their own needs. An
important added bonus of online courses based on these
tools is their ability to run inside portable devices such as
smartphones, so that students can follow their courses even
when they are not at their PC. Some of these tools, such as
for example Brython, a JavaScript implementation of
Python 3 (http://www.brython.info/), run inside the web
browser so that they can be also used offline.

IV. BUILDING A JAVASCRIPT INTERPRETER FOR THE C
PROGRAMMING LANGUAGE

What is apparently missing is now a similar lightweight
and embeddable IDE for the C programming language.
Indeed, due to its exceptional runtime efficiency, the C
programming languages is one of the most used
programming languages for computer science courses and
in online courses.

Building a C interpreter running inside a web browser,
in principle, is not a very complex task. Starting from a full-
featured or minimal open source C interpreter (such as for
example iGCC,
http://www.artificialworlds.net/wiki/IGCC/IGCC, or Picoc,
https://code.google.com/p/picoc/), it is possible to compile
it to an optimized JavaScript code by using Emscripten
(http://kripken.github.io/ emscripten-site/). This process,
that has been used, for example, to create WebGL, the
JavaScript version of the OpenGL library, is not desirable
for several reasons. Indeed, the final code is much larger
than it is needed for an introductory C interpreter. Just to
give an example, compiling the simple “Hello, world!” C

2015 2nd International Conference on Intelligent Computing and Cognitive Informatics (ICICCI 2015)

© 2015. The authors - Published by Atlantis Press 68

program will result in several hundred lines of code
(https://cs-263-emscripten. readthedocs.org/en/latest/
simpleexample.html). However, we aimed at building an
extremely lightweight C compiler that could be easily
embedded and run also in a mobile device. Moreover, the
compiled code cannot be easily modified as it is produced
by keeping in mind efficiency, not readability.

The minimal C interpreter we need does not intend to
replace full featured interpreters. Indeed, its main purpose
is that of being able to run inside a web browser -so to be
used even offline- and to be easy to customize and maintain
following the specific needs of the teacher that will be then
able to progressively introduce the syntax of the C
programming language.

In the following, I will describe the development of
LittleC.js, a minimal, lightweight, “progressive”, easily
extensible, and embeddable implementation of the C
programming language made in JavaScript. Furthermore, a
minimal implementation of an IDE for this language will be
described. LittleC.js has been designed in order to support,
as an introductory language and IDE, the Introductory
Computer Programming course at the Faculty of
Engineering of the University of Cagliari.

V. LITTLEC.JS: A MINIMAL IMPLEMENTATION OF C
RUNNING INSIDE YOUR BROWSER

In order not to reinvent all the necessary components
from scratch -that is writing a basic recursive descent parser
and adding the necessary libraries- the development of
LittleC has started from an existing minimal
implementation of the C interpreter written in ANSI C by
Schildt (1989) with the following features:

• Parameterized functions with local variables
• Recursion
• if-else statement
• do-while, while, and for loops
• Integer and character variables
• Global variables
• Integer and character constants
• String constants (limited implementation)
• return statement, both with and without a value
• A limited set of standard library functions.
• Several operators: +, -, *, /, %, <, >, <=, >=,

==, !=, unary -, and unary +.
• Functions returning integers
• Comments

for(a=0; a<10; a=a+1)
 for(b=0; b<10; b=b+1)
 for(c=0; c<10; c=c+1)
 puts("hi");

Figure 6. C program that cannot be interpreted by LittleC.

for(a=0; a<10; a=a+1) {
 for(b=0; b<10; b=b+1) {
 for(c=0; c<10; c=c+1) {
 puts("hi");
 }
 }
}

Figure 7. C program that is correctly interpreted by LittleC.

There are some small limitations. To give an example,
in order to correctly interpret the code shown in Figure 6, it
will have to be rewritten as shown in Figure 7 so that the
targets of the if, while, do, and for are always “blocks" of
code surrounded by beginning and ending curly braces.

The original code is divided in three files: recursive
descent parser, C interpreter, and library of functions. The
code has been manually converted to a single JavaScript
file, by keeping the original structure and by adding the
necessary auxiliary functions such as, for example, the C
library functions isdigit, isalpha, and strchr; auxiliary
functions to skip white spaces and to look ahead one
position in the code stream. The final JavaScript code looks
simpler and cleaner than the original C code as it is not
based on pointers and structures. The full code, with
comments and spaces, is about 31KBs. Once minified, the
whole code is less than 13KBs.

Due to the lack of proper scanf and printf functions,
necessary for the introductory course for which LittleC has
been designed (the original interpreter only has a simple
print functions without format parameter), several additions
to the original C interpreter have been done:

• #include directive (to include the stdio library)
• printf
• scanf
• exit

The JavaScript implementation of printf and scanf
functions has been designed on the “Sprintf for JavaScript”
code (http://www.diveintojavascript.
com/projects/javascript-sprintf) by Alexandru Marasteanu.

In order to make the usage of LittleC.js even simpler
than the original interpreter, several error messages have
been added to the list of 17 messages of the original
interpreter. Those messages alert the user when the stdio
library is needed but has not been included, when fewer
arguments have been passed to a function or when an
unknown character has been encountered in the C source
code.

VI. ADDING AN IDE
In order to make LittleC very simple to use, a basic

online IDE has been created based on the IDE of the
“Online JavaScript Interpreter”
(http://math.chapman.edu/~jipsen/js/) by Peter Jepsen. The

2015 2nd International Conference on Intelligent Computing and Cognitive Informatics (ICICCI 2015)

© 2015. The authors - Published by Atlantis Press 69

editor window of the original IDE has been enhanced by
using the CodeMirror JavaScript editor
(http://codemirror.net/). By using CodeMirror the editor is
able to show line numbers and to highlight the C syntax.
With these two additions, the overall size of the code of the
full IDE (HTML, CSS styles, editor, printf/scanf library,
and interpreter) is about 360KB.

Figure 8. LittleC.js IDE: code editor and output area.

A. Using the LittleC.js IDE
The LittleC.js IDE is extremely simple (Fig. 8). At the

left hand side there is the editor in which the user can type
or paste the desired C code. Several sample codes are
available by selecting them in the upper menu (Fig. 9).

Figure 9. LittleC.js IDE: code editor.

The code is run by clicking the “Run” button available
at the top of the right hand side area (Fig. 10). The result is
shown in the output area below the button. If syntax errors
(or some semantic errors, such as a missing include
directive) are found, they are shown in the output area.

Figure 10. LittleC.js IDE: output area.

The code can then be modified or corrected and then
run again. At the bottom of the page, the user has a short
list showing the syntax of the C elements available in
LittleC.js (Fig. 11).

Figure 11. C elements available in littleC.js.

2015 2nd International Conference on Intelligent Computing and Cognitive Informatics (ICICCI 2015)

© 2015. The authors - Published by Atlantis Press 70

B. Using the Progressive Syntax of LittleC.js
As anticipated in the above sections, the C syntax

illustrated in the introductory course of Computer
Programming for which this interpreter has been developed,
is gradually introduced to students. So, at the very
beginning, variable declaration, main function, format
argument of printf and scanf, and libraries are not
introduced, in order to allow students to gradually
experiment with C syntax without having to immediately
understand concepts such as “library inclusion”, “main
function”, “formatted output”, “variable declaration”.
Indeed, the very same concepts are not included in the
educational languages (such as Scratch or Snap) that they
have used so far before starting to use LittleC. Therefore, to
allow the teacher to illustrate progressively more complex
C syntax, in the list of available C elements at the bottom of
the LittleC IDE there are checkboxes for “Assignment”,
“Function” and “Output” (Fig. 12). Those checkboxes,
when unchecked, do not raise errors if the users do not
declare variables, do not use the “main” function, do not
include libraries for input/output functions or do not use
format arguments.

Moreover, if the teacher prefer not to leave the students
the possibility to include/exclude the language features, a
general flag can be changed inside the HTML page, so that
the checkboxes are not shown and individual flags can
instead be set inside the littleC.js code.

Figure 12. Selection of LittleC elements.

VII. CONCLUSIONS
Usage of LittleC.js for the introductory course of

Computer Programming at the Faculty of Engineering of
the University of Cagliari has shown that such a tool can be
effective to allow students to interactively test their very
first attempts in learning the syntax of the C programming

language. The language implementation is clean and new
features can be added very straightforwardly, as shown by
the addition of the prinft/scanf and exit functions that were
necessary for the course.

LittleC.js is extremely lightweight and it suits very well
the limited capabilities of mobile devices such as
smartphones by making it available to students always and
everywhere.

LittleC.js and similar versions of other programming
languages could fill the gap between block languages and
standard text-based languages.

VIII. FURTHER WORK
In order to make LittleC.js even more useful for

introductory computer science courses, several additional
features (such as mono- and/or bi-dimensional arrays) could
be added. Furthermore, the need to add curly braces around
code blocks could be removed.

Finally, by adding some basic C++ elements such as
cin, cout and passing parameters by reference, a C++
version of LittleC.js could be easily created.

IX. SOURCE CODE
LittleC is available at blocklanguages.org/littleC. The

source code of the full environment can be downloaded by
simply saving the webpage.

REFERENCES
[1] Badger, M. 2014. Scratch 2.0 Beginner’s Guide. Packt Publishing; 2nd

Revised edition (24 Mar. 2014).
[2] Beckford, C. & Mugisa, E. 2011. Towards Achieving an Ideal

Environment for Teaching Programming Online. In Proceedings of
the International Conference on e-Business, e-Organization, e-
Management and E-Learning (Mumbai, India, January 28-29, 2011).
IC4E 2011.

[3] Federici, S. 2011. A minimal, extensible, drag-and-drop
implementation of the C programming language. In Proceedings of
the 2011 conference on Information technology education (New
York, USA, October 19-22, 2011). SIGITE 2011.

[4] Federici, S. & Gola, E. 2015. BloP: easy creation of Online Integrated
Environments to learn custom and standard Programming Languages.
In Proceedings of SIREM-SiEL conference (Perugia, Italy, November
13-15, 2014).

[5] Garcia, D., Harvey, B. & Segars, L. 2012. CS Principles pilot at
University of California, Berkey. ACM Inroads Magazine. Volume 3,
Issue 2, pp. 58-60. ACM, New York, NY, USA.

[6] Guo, P. J. 2013. Online Python Tutor: Embeddable Web-Based
Program Visualization for CS Education. In Proceedings of the 44th
ACM Technical Symposium on Computer Science Education (March
2013). SIGCSE ’13. ACM New York, NY, USA.

[7] Harvey, B. & Monig, J. 2010. Bringing 'No Ceiling' to Scratch: Can
One Language Serve Kids and Computer Scientists? In Proceedings
of Constructionism 2010 (Paris, France, August 16-21, 2010).

[8] Resnick, M., Maloney, J., Monroy-Hernández, A., Rusk, N., Eastmond,
E., Brennan, K., Millner, A., Rosenbaum, E., Silver, J., Silverman, B.,
and Kafai, Y., 2009. Scratch: Programming for All. Communications
of ACM, 11

[9] Schildt, H. 1989. Building your own C interpreter. In Dr.Dobb’s
Journal. UBM Tech.
Permalink=http://www.drdobbs.com/cpp/building-your-own-c-
interpreter/184408184.

2015 2nd International Conference on Intelligent Computing and Cognitive Informatics (ICICCI 2015)

© 2015. The authors - Published by Atlantis Press 71

