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Abstract—By using the principle of partly least square to 
locate and value the gross errors in the observational data, the 
matrix equation of the adjustment model may have ill-posed 
problems, which results in the locations and evaluations of the 
gross error unreliable. For the observational data which 
contain gross errors and have ill-posed problems, firstly, this 
paper chooses the ridge estimation to deal with the ill-posed 
problems, then proposes a method based on the partly least 
square ridge estimation to locate and value the gross errors, 
and the specific search steps for gross errors are given, the 
locations and evaluations of the gross error can be gotten by 
the iterative algorithm. At last ,by using the method of partly 
least square and the partly least square ridge estimation to 
locate and value the gross errors in one simulating 
computation, and analyzing the two methods’ results, the 
proposed method’s validity is verified. This method discusses 
the gross error approach from another perspective, it extends 
the existing error theory. 

Keywords-gross error; ill-posed problem; partly least square; 
ridge estimation; location and evaluation. 

I. INTRODUCTION 
In the observational data process, the presence of gross 

error has bad effect on the adjustment result[1],in order to 
eliminate or weaken the effect, extensive researches have 
been carried out by domestic and foreign scholars, then a 
lot of solutions to the problem of gross error have been 
gotten, such as the data detecting method[2], the partly least 
square method[3,4,5], the mean shift method[6], LEGE[7,8,9], 
QUAD[10], robust estimation[11,12] and so on. Among these 
methods, the principle of partly least square method is 
straightforward, which has been used for handling large 
amount of observations, the references [3] studied the way 
to locate and value gross error when observational data are 
independent or related, the references [4] aimed at realizing 
fast searching gross error from the relevant observational 
data. Actually, inadequate observational data or 
approximate correlation between the parameters in the 
adjustment model makes the matrix of observation equation 
appear ill-posed problem. If the observational data contain 
gross error and ill-posed problem, the partly least square 
method fails to locate and value gross error. 

In order to get the positions and values of gross error 
when observations have ill-posed problem, this paper 
introduces the ridge estimate[13,14] into the adjustment 
model, and establishes a theory based on partly least square 
ridge estimate. Firstly, the observational data are grouped, 
and the ill-posed problem is solved with the ridge estimate, 
then the partly least square ridge estimators and the 
expression of gross error are gotten; Secondly, the gross 
error search steps are given in detail, which can help 
achieve locating gross error; Lastly, the effectiveness of 
this method is demonstrated with a simulating 
example .This method provides a new way to handle the 
observation which contain simultaneously gross error and 
ill-posed problem, and expands the application scope of 
partly least square. 

II. VALUE OF GROSS ERROR 
Based on the system clustering, the observational data 

are grouped as two parts, the first group contains 
r observations without gross error, the second group 
contain q observations with gross error, then the error 
equation of two groups of observations based on the Gauss-
Markov adjustment model can be written as: 

ˆ
r r rV B X L= −                (1) 

ˆ
q q qV B X L= −                (2) 

Where n  is a number of total observations, 
satisfies r q n+ = , rL is a 1r× dimension observation 

vector, rB is a known r t×  nonsingular matrix, t is a 

number of necessary observations, rV is a 1r×  residual 

vector of the first group of observations, X̂ is a 
1t× dimension unknown parameter vector, the marks in 

the Eq.(2) have the similar definition, the observations are 
assumed to be independent, the diagonal matrix rrP , qqP  
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represent the right matrix of two groups of observations 
respectively. 

If the observational data have a ill-posed problem, the 
coefficient matrix of the first group observations appears 
multicollinearity, the matrix T

r r rr rN B P B=  closes to 
singular, then a small error of observations may bring sharp 
change to the parameter solution, which makes the 
adjustment estimators unreliable, and results in a failure to 
value gross error further. 

In order to get the locations and values of gross error 
again, this paper brings the ridge to adjustment model, then 
the adjustment criterion for the first group of observations 
is 

minT T
r rr rV P V X MXκ+ =        (3) 

Where κ is a ridge parameter, M is a symmetric 
positive definite matrix, for the ridge estimate, it is a unit 
matrix, under such a condition, the estimators based on the 
Eq.(1) are named the partly least square ridge estimate, they 
can be deduced as follows: 

Firstly, the minimum value of Eq.(3) on 
parameter X can be gotten by the follow equation: 

 

( )

2

2 2 0

T T
r rr r

T
Tr rr r r
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∂ ∂
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      (4) 

 
Secondly, by bringing the Eq.(1) into the Eq.(4),we can 

get the parameter estimator: 
 

1ˆ ( )
i T

r rr r r rr rX B P B kM B P L- T= +    (5) 

 
According to the Eq.(1) and Eq.(5),the residuals of the 

first group of observations are gotten: 
 

1( )i T T
r r r rr r r rr r rV B B P B kM B P L L−= + − (6) 

 
Then the corresponding unit weight mean square error 

estimate is: 
 

iT i
i r rr r

r
V P Vm

r t
=

−
           (7) 

 
Lastly, by bringing the Eq.(5) into the Eq.(2),we can get 

the corrections of the second observations is: 
 

1( )i T T
q q r rr r r rr r qV B B P B kM B P L L−= + − (8) 

 
Through choosing appropriate ridge parameter, the 

parameter estimator ˆ iX  can avoid the effects of ill-posed 
problem and gross error, the way to select the ridge 
parameter are ridge trace method, GCV method, L curve 
method and so on[14].The residuals i

qV gotten with Eq.(8) is 
the difference between the second group of observations 

qL and the estimator ˆ i
qB X ,which is approximate to the 

true value of gross error, then the gross error estimator is 
i

qV− . 

III. POSITION OF GROSS ERRORT 
From the Eq.(8),we know the value of gross error 

depends on the parameter estimator ˆ iX and right grouping, 
the parameter estimator avoids suffering from the ill-posed 
problem with ridge estimate, so how to properly make 
observations into two groups is the primary problem. 

Actually, we can not learn the number and positions of 
gross error in advance, this paper locates gross errors 
through the progressive search until all the positions of 
gross error are gotten. 

For the unit weight mean square error (MSE) of 
observations without gross error is smaller than that of 
observations with gross error, so we can decide whether to 
continue searching gross error through the level of 
reduction about the smallest unit weight mean square error 
during the search process. According to the reference [3] 
and the partly least square estimate, the criteria of the level 
of reduction about unit weight mean square error is: 

( 1) 2
( )

i
r

i
r

m kbizhi
m k

−
= >          (9) 

Where k is the number of gross errors, if the total 
observations contain k or 1k − gross errors, ( )i

rm k or 

( 1)i
rm k − is the smallest unit weight mean square error, 

which is gotten by adjusting the first group of observations 
based on the partly least square ridge estimate. The specific 
gross error search steps are: 
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1) For the observations with gross error and ill-posed 
problem, it is assumed that the observations are without 
gross error, and taken as the first group of observations to 
adjust, through GCV method the ridge parameter is 
determined, and according to the Eq.(5) to Eq.(7),the partly 
least square ridge estimators are gotten, where 

0k = , (0)i
rm is the corresponding unit weight mean 

square error estimator. 
2) It is assumed that the observations contain one gross 

error, that is 1k = ,the 1th, 2th, nth observation are 
taken to the second group in turn, at the same time, the 
corresponding remaining 1n − observations are taken to 
the first group, there are n  kinds of grouping. Similarly, 
through adjusting the first group observations, the 
corresponding partly least square ridge estimators are 
gotten, the smallest unit weight mean square error estimator 

(1)i
rm  is chosen from the n estimators, which is taken into 

the Eq.(9) to calculate the bizhi. With the calculation 
results, we decide whether to continue to research the gross 
errors: 

If 2bizhi > , the unit weight mean square error turn 
small obviously, it means the observations contain only one 
gross error, that is the observation which has the smallest 
unit weight mean square error, 1q represents the 
corresponding gross error position ,then the search ends; 

If 2bizhi < , though the unit weight mean square 
error turn small, but the level of reduction is not significant, 
it shows the observations contain two gross errors at least, 
so it is necessary to continue to search the gross errors, then 
the search process goes to the 3th step. 

3)It is assumed that the observations contain two gross 
errors, that is 2k = .The position of one gross error is 

1q ,this gross error should be deleted from the total 
observations before searching the remaining 1n −  
observations. Similarly, the 1th, 2th, i th( 1i q≠ ), 

nth observations are taken to the second group in turn, 
and the corresponding remaining ( 1) 1n − −  observations 
are taken to the first group to adjust, the smallest unit 
weight mean square error estimator (2)i

rm  is chosen 
from the 1n −  groups of partly least square ridge 
estimators, then the (1)i

rm and (2)i
rm are taken into the 

Eq.(9) to calculate bizhi.. If 2bizhi > , it concludes that 
the 1n − observations have one gross error, that is the 
observation corresponding to the (2)i

rm , 2q  represents 
the position of this gross error. Then there are two gross 
errors in the observations in total, and the positions are 1q  

and 2q  respectively; if 2bizhi < , it means that the 
n observations contain three gross errors, it needs to search 
continually. Similarly, the second gross error should be 

deleted from the 1n −  observations, and the remaining 
observations are searched by repeating the above steps, 
until the unit weight mean square error turn small 
obviously. 

At last, according to the positions of gross error, the 
observations can be classified to two groups, by adjusting 
the first group of observations again, the partly least square 
ridge estimators are gotten, then we can get the values of 
gross error. 

IV. SIMULATING COMPUTATION 
One simulating computation is given to certify this 

paper’s method. The observations can be described by a 
equation, that is L BX= + Δ , where ~ (0,1)NΔ , the 
number of observations satisfies 10n = , the true value of 
parameter X  satisfies [11111]TX = , the number of 
necessary observations is 5t = . The corresponding matrix 
is :  

 
Now, the 2th, 6th observations are added with gross 

errors with same value 10. 
According to the condition number method[14] which is 

used to diagnosis the ill-posed problem, the condition 
number of the normal equation coefficient matrix 

TN B PB=  is 51.2892 10× , it shows the observations 
have a bad ill-posed problem. In order to verify the method, 
the simulating computation will be computed with the 
partly least square method and the partly least square ridge 
estimate method. 

A. The Partly Least Square Method 
During the gross error search steps, when we assume 

that the observations contain not gross error, after the 
adjustment, the unit weight mean square error estimator is 
1.6866; when we assume the observations contain one 
gross error, we can get the smallest unit weight mean 
square error estimator is 0.8323, the position is the 2th 
observation,  the ratio of two unit weight mean square 

2 5 1 1 9.5
2 4 1 1.05 8.5
2 1 1 -1 2.4

-1 2.5 4 -0.5 7
-1 3.2 4 -0.5 8.4
1 1 -3 0.4 0.49
3 7 -3 1.5 12.7
5 -1 -2 2.5 -3
4 2 -2 2.01 3
4 3 -2 2 5

B

− −⎡ ⎤
⎢ ⎥− −⎢ ⎥
⎢ ⎥−
⎢ ⎥
⎢ ⎥
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦
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error estimator is greater than 2, the search ends, we judge 
the second observation has gross error only, it turns out that 
the position is different from the true positions of gross 
error. The parameter estimator based on the location of the 
gross error is : 
 

ˆ [60.7360 11.2029 3.8774 118.4024 3.9899]TX = − −
 

It is far from the true value of gross error. 

B. The Partly Least Square Ridge Estimate Method 
Firstly, it is assumed that the total observations contain 

not gross error, after adjusting the observations, the 
corresponding partly least square ridge estimators are 
gotten, among them , the unit weight mean square error is 

(0) 4.7751i
rm = ; 
Secondly, it is assumed that the observations have one 

gross error, according to the step 2) , we can get 10 unit 
weight mean square error estimators i

rm , they are showed 
in figure 1, it is obvious that the 6th observation has the 
smallest unit weight mean square error estimator 

(1) 3.4746i
rm = , and the corresponding unit weight 

mean square error estimator ratio is,  

It shows that the observations have 2 gross errors at 
least, and the position of the first gross error is 6, it needs to 
search continually. 

Thirdly, it is assumed that the observations have two 
gross errors, before searching, the 6th gross error is deleted 
from the observations, and the remaining 9 observations are 
adjusted to get the corresponding unit weight mean square 
error estimators i

rm , they are showed in the figure 2, the 
2th observation has the smallest unit weight mean square 
error estimator 0.4760, and the ratio is, that means the total 
observations have two gross errors, and the position of the 
second gross error is 2,the search ends. 

 

 
 
 
 
 
 
 
 
 
 

Figure 1. The unit weight MSE when the observations assumed with one 
gross error 

Figure 2. The unit weight MSE when the observations assumed with two 
gross error 

 
Above all, the positions of gross error are the 2th, 6th 

observations, which satisfy the true positions. The two 
observations are taken to the second group, the remaining 
observations are taken to the first group to adjust. With the 
GCV method, the ridge parameter 0.14κ = ,on this basis, 
the parameter estimator is: 

 
ˆ [1.1920 0.5457 1.1979 0.6409 1.2477]i TX =  

 
Which closes to its true value, then with the Eq.(8) ,we 

can get the gross error estimators are 9.4347, 10.7585 
respectively, and the final unit weight mean square error is 

0ˆ 0.4337σ = ,the precision is improved obviously. 
The computation results show that if the observations 

have ill-posed problem and gross error, the traditional 
partly least square method fails to locate and value gross 

(0) 1.3743 2
(1)

i
r

i
r

mbizhi
m

= = <

(1) 7.2995 2
(2)

i
r
i

r

mbizhi
m

= = >
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error, however, the partly least square ridge estimate 
method can get the positions and values of gross error. 

V. CONCLUSION 
For realizing locating and valuing gross error when the 

observations have ill-posed problem, this paper proposed a 
method based on the partly least square ridge estimate, by 
combing the advantages of ridge estimate and partly least 
square, it can get the positions and values of gross error 
while overcoming the ill-posed problem. Some conclusions 
obtained in the deduced formula and the examples are 
given: 

1) If observations contain gross error and ill-posed 
problem at the same time, the partly least square method 
fails to locate and value the gross error for the influence of 
ill-posed problem. This paper introduces the ridge estimate 
to deal with ill-posed problem, then the partly least square 
ridge estimators are deduced based on the principle of the 
partly least square. 

2) The expression of gross error estimator is derived 
on the basis of the partly least square ridge estimate, and 
the position of gross error can be gotten by searching 
successively. The simulating computation certifies this 
paper’s method is effective to locate and value gross error 
with high precision. 

This method enriches the theory of the partly least 
square, extends its application scope, and provides a new 
way to deal with the observations with ill-posed problem 
and gross error. 
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