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Abstract—In order to meet the development trend of smart 
grid, the correlated equilibrium Q-learning (CEQ) algorithm is 
proposed for multi-regional reactive power optimization. 
Meanwhile, in response to the national strategy of low carbon 
environmental protection, CO2 emission is considered as one of 
the control objectives in reactive power optimization. In this 
paper, CEQ algorithm is adopted to allocate the control 
variables rationally, through the correlated equilibrium game 
among areas and information communication and sharing to 
achieve multi-regional reactive power optimization, which 
solves the limited information-sharing mechanisms and curse 
of dimensionality problem effectively. Simulation of the IEEE 
9-bus system indicates that through the combine of pre-
learning and online learning CEQ algorithm solves the multi-
regional collaborative reactive power optimization quickly and 
rationally. 

Keywords-multi-regional reactive power optimization; low-
carbon electricity; correlated equilibrium; reinforcement 
learning  

I. INTRODUCTION 
Reactive power optimization is to control the system 

voltage and reactive power distributions to achieve a better 
system performance. Mathematically, reactive power 
optimization is a nonlinear mixed integer programming 
problem [1]. 

With a lot of intermittent renewable energy sources 
connected to the power grid, the power system is becoming a 
complex non-linear large-scale system, which brings about 
the problems of coordination interaction, massive data and 
communication bottlenecks [2]. Because of the difficult in 
information exchange and high cost caused by wide 
geographical distribution of the power grid, not all the 
information can be sent to the centralized control center in a 
centralized decision-making way. While, the existing 
reactive power optimization algorithms are not suitable to 
deal with the problems of curse of dimensionality, 
coordination and interaction ,which include classical 
optimization algorithm and part of modern optimization 
algorithm such as genetic algorithms [3], quantum genetic 
algorithm [4], PSO algorithm [5] and ant immune algorithm 
[6]. Meanwhile the global grid information is needed to run 
centralized optimization using these algorithms. Therefore, 
the reactive power optimization algorithm that is applicable 
to the new situation need to be proposed. 

In addition, with global warming attracting more and 
more attention, "low-carbon life" concept are gradually 
accepted. Since a large part of China's carbon dioxide (CO2) 
emission comes from the consumption of fossil fuels in 
power industry. Thus, research on low-carbon electricity 
techniques is meaningful, such as low-carbon power system 
planning and operation [7], low-carbon electricity dispatch 
[8], the power plant carbon capture and storage technologies 
[9]. While these research is mainly from the perspective of 
generation side, so this paper introduces grid side carbon 
emission into the objective function of reactive power 
optimization model. 

Since not all the information can be sent to the control 
center, the collection of reactive power optimization 
information is restricted, which can be solved through 
regional "autonomy" and interregional "coordination". 
Therefor correlated Q-learning (CEQ) algorithm for multi-
regional collaborative reactive power optimization is 
proposed. The algorithm realized through information 
exchange of state-action value function matrix and 
cooperative game among regions. 

II. GRID SIDE CO2 EMISSION MODEL 
The grid-side CO2 emission flow is similar to power 

flow. The difference between the two flows is that the 
existence of grid-side carbon emission flow is virtual 
network flow which depends on power flow and can be 
understood as carbon labeling of branch power flow.  

Consider power grid N with n buses, s generators buses, 
b branches and Lij denotes the branch connecting bus i and 
bus j .  

For lossless network Pij=Pji, then the active power flow 
from generator  bus k to bus i can be described as: 

ik ik skP Pα= ⋅                                     (1) 

Where Psk  is the output active power of generation bus k, 
αik  represents the contribution rate of active power from 
generator bus k over bus i. Specific derivation can be found 
in[10]. 

Similarly, from the point of the composition of the total 
active power flowing into bus i, the proportion of the active 
power from generator bus k to bus i in total active power 
flowing into bus i can be represented as follows: 
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Where Pi is the total active power of bus i. 
For lossy network Pij≠ Pji, the power loss ΔPij of branch 

Lij can be expressed as:  

2 2
ij [ 2 cos ]ij i j i j ijP g V V VV θΔ = + −                 (3) 

Where Vi and Vj respectively denote voltage amplitudes 
of bus i and bus j; θij is the voltage angle difference between 
buses i and j, gij  represents the conductance of branch Lij . 

According to the principle of proportional-sharing[11], 
βij is also the power loss contribution rate of bus k to branch 
Lij. Hence the power loss of branch Lij can be described as: 

ij ij ij
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Where s is the number of generator buses.  
The carbon emission intensity is numerically equal to 

the generator carbon emission factor multiplying the active 
power output. The analogy can be obtained that the ΔCij, 
which is the carbon emission loss intensity of branch Lij, is 
formulated as: 

j ij ij
1 1

( ) (( ) )
S S

ik sk
i ik ik ik

k k i

P
C P P

P
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β δ δ
= =

⋅
Δ = ⋅ Δ ⋅ = ⋅ Δ ⋅∑ ∑         (5) 

Where δik  denotes CO2 emission factor of generator bus 
k. 

III. MATHEMATICAL MODEL OF MULTI-OBJECTIVE 
REACTIVE POWER OPTIMIZATION  

Multi-objective reactive power optimization model 
includes objective function and constraints which mainly 
include controlled variable constraints, state variable 
constraints and power flow constraints. 

A. Objective Function 
The multiple objectives include the grid side CO2 

emission loss, power loss and voltage stability component. 
From an environmental point of view, the minimum grid 

side CO2 emission loss can be rewritten as: 

j ij
, , 1

min( (( ) )
L L

S
ik sk

i ik
i j N i j N k i

P
C P

P
α

δ
∈ ∈ =

⋅
Δ = ⋅ Δ ⋅∑ ∑ ∑（ ）） （ ）    (6) 

Where ΔCij is the CO2 carbon emission loss of branch Lij, 
Psk is the output active power of generator bus k; Pi is the 
total active power flowing into bus I,ΔPij is the power loss 
of branch Lij , NL is the set of branches. 

From the economy point of view, the minimum power 
loss can be expressed as follows: 

2 2
ij

, ,

min( [ 2 cos ]
L L

ij i j i j ij
i j N i j N

P g V V VV θ
∈ ∈

Δ = + −∑ ∑（ ）） （ ）    (7) 

Where ΔPij is the active power loss of branch Lij. 
From the safety point of view,to make the synthesized 

voltage stability of buses in the system optimal, the 
objective function is: 

max min

1 1 max min

2
min(

n n
i i i

i
i i i i

V V V
V

V V= =

− −
Δ =

−∑ ∑）               (8) 

Where ΔVi is the voltage stability component of bus i, 
Vimax and Vimin are the maximum voltage limits and 
minimum voltage limits of bus I, n is the number of the 
buses. 

Considering the grid side CO2 emission loss, branch 
loss and voltage stability component, the multi-objective 
function can be represented as follows: 

1 j 2 ij 3
, , 1

min(
L L

n

i i
i j N i j N i

F C P Vλ λ λ
∈ ∈ =

= ⋅ Δ ⋅ Δ + ⋅ Δ∑ ∑ ∑（ ）+ （ ） ）  (9) 

Where λ1 is the grid side CO2 emission loss weighting 
factor; λ2 is the power loss weighting factor; λ3  is the 
voltage stability component weighting factor. The values of 
these weighting factors meet λ1∈(0,1],λ2∈(0,1],λ3∈(0,1] 
and λ1+λ2+λ3=1. 

B. Constraints 
Reactive power optimization constraints involve 

controlled variable constrained, state variable constraints 
and power flow constraints. We choose the capacity of 
shunt capacitance Qc and transformer ratio KT as the 
controlled variable constrains. The controlled variables 
should meet following conditions: 

min max
C C C C
min max

, 

,
i i i

Tj Tj Tj K

Q Q Q i N

K K K j N

≤ ≤ ∈

≤ ≤ ∈
                     (10) 

Where Nc represents the set of buses with adjustable 
reactive power capacity; Nk is the set of branches with 
adjustable transformer ratio. 

The state variables include the output active power PG 
and reactive power QG of the generator and the bus voltage 
V. The state variables should meet following conditions: 

min max
G G G G
min max
G G G G

min max

,

,

,

i i i

j j j

k k k B
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                     (11) 

Where NG、NB represent the set of generator buses and 
the set of buses. 
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Active power balance constraints and reactive power 
balance constraints are included in the power flow 
constraints equation. It can be expressed as follows: 

G D
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∑
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Where PG、QG denote the output active and reactive 
power of the generator bus, PD、QD represent the active and 
reactive loads of the load buses; gij、bij are the conductance 
and the susceptance of the branch Lij. 

IV. CORRELATED Q-LEARNING FOR MULTI-REGIONAL 
REACTIVE POWER OPTIMIZATION 

Greenwald first proposed CEQ algorithm [12]. 
Correlated equilibrium is a probability distribution of the 
joint action space. The correlated equilibrium policy is that 
each agent selects its action according to the conditional 
probability of other agents over it to maximum its 
accumulation of reward value[13]. 

The eligibility trace update policy of agent i is as follows: 

,( 1)
,

,( 1)

( , ) 1    ( , ) ( , ) 
( , )

( , )         otherwise
i k k k

i k
i k

e s a s a s a
e s a
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−

−
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     (13) 

Where ei,k(s,α) is the eligibility trace of agent i in the kth 
iteration for the joint action α;γ  is the discount factor, 
0≤γ≤1; λ is the attenuation factor, 0≤λ≤1; s represents state. 

The agent i ’s Q matrix update can be formulated as 
follows: 
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Where Ri is the agent i ’s immediately reward function, 
α is the learning factor,0≤α≤1, αg denotes the joint greedy 
action policy. 

The reward function can be described as follows: 

1 j 2 ij 3
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Where ΔC is theCO2 emission loss, ΔP is the branch loss 
and ΔV is the voltage stability component. 

Through solving linear programming the optimal action 
probability distribution can be get. The objective and 
constraints of linear programming is represented as follows: 
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Where index –i represents the set of other agents except 
agent I; αi’ denotes any other action of agent i apart from αI ; 
π is the action probability. N、S、A(s) are the set of agents, 
the set of states and the set of action. 

Power system reactive power optimization generally 
adopts the policy of balance on the spot, which is obvious 
regional. Hence the power grid can be divided into several 
regions. Every controlled variable in reactive power 
optimization algorithm respect an agent in CEQ algorithm. 
The Q values of each agent can be observed by any other 
agents. Meanwhile the agent can solve the correlated 
equilibrium independently and select the action.  

The framework of regional reactive power optimization 
describes in Figure 1 

Variable 
group

x2

Region 1

Variable group
x1

Variable 
group

xn

Observing each Q matrix and the current action
solving the CE

...

Region 2 Region n

 
Figure 1. Framework chart of regional reactive power optimization 

At the beginning of reactive power optimization, before 
the power flow calculation the values of controlled variables 
are determined. Next, run the power flow calculation and 
calculate the reward function and state value with the power 
flow result. Then, using CEQ algorithm to solve reactive 
power optimization and calculate the value of controlled 
variables. Finally loop until the best action value is acquired. 
The flow chart of reactive power optimization is shown in 
Figure 2 

Determine the value of 
controlled varaibles

Power flow calculation 

Determine the action value

Optimization based on CEQ

Reward 

State 

Action 

 
Figure 2. Reactive power optimization flowchart 

To sum up, Figure 3 shows the flow chart of multi-
regional reactive power optimization algorithm based on 
CEQ. 
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Start

Divide the controlled variables into layers and 
determine the action space 

Initilize Q matrix、P matrix、eligibility traces 
e and algorithm parameters

All the agents select action by probability matrix  
and calculate  immediate reward(15)

Update e matrix ,Q matrix , P matrix in layer 1  and solve 
CE then select next joint action(13)~(14)

Determine the values of all variables to calculate 
the objective function value(9)

k>kmax

end
yes

k=k+1

Interative step k=1

No 

 
Figure 3. Algorithm flowchart 

V. EXAMPLES AND SIMULATION ANALYSIS 

A. Simulation Model 
In this paper, the simulation test is carried out by IEEE9 

Bus power system on Matlab7.10 simulation platform and 
the power flow calculation is based on Matpower4.1. There 
are 3 generators,3 load buses and 9 branches in the IEEE9 
bus system. The system is divided into 3 regions according 
to the distribution and connection of the buses. The bus 
partition is shown in figure4: 

 
Figure 4. Bus partition in IEEE9 system 

As is shown on the picture above, the grid is partitioned 
in accordance with the red dotted line. The various regions 
communicate and share information with each other in the 

reactive power optimization process based on CEQ. The 
capacities of reactive power compensation in buses 5,7,9 are 
chosen as controlled variables. 

B. Simulation Result s 
Q-learning is process of trial and error. In the early 

stages, Q-learning is relatively random and blind. It’s not 
appropriate to be directly applied to online optimization of 
the actual system. So we need to get pre-learning Q value 
matrix with learning experience, and then carry on online 
learning. 

After a lot of simulation analysis, for pre-learning 
process ,the value of learning factor, discount factor and 
eligibility factor are respectively 0.94,0.10,0.50; for online 
learning process, the value of learning factor, discount 
factor and eligibility factor are respectively 0.40, 0.10,0.30. 

In response to the policy of low-carbon electricity, the 
grid side carbon emissions loss is considered as one of 
reactive power optimization objectives. The carbon 
emission factor of generators in IEEE9 buses system is 
shown in Table I: 

TABLE I.  CARBON EMISSION INTENSITY OF IEEE 9 BUS 

Bus Generator type δ (kg/kW·h) 
Bus 1 Thermal power (coal-fired) 1.01 
Bus 2 Thermal power (coal-fired) 0.95 
Bus 3 Hydropower 0 

 
Figure 5 (a) shows the convergence curve of the 

objective function by pre-learning process. figure 5 (b) 
shows the convergence curve of the objective function by 
online learning. 

0 5 10 15 20 25
9

9.5

10

10.5

11

11.5

12

12.5

time（s）

ob
je

ct
iv

e 
fu

nc
tio

n 
va

lu
e

 
（a）  

0 0.5 1 1.5 2 2.5
9.3

9.35

9.4

9.45

9.5

9.55

9.6

9.65

9.7

9.75

time（s）

ob
je

ct
iv

e 
fu

nc
tio

n 
va

lu
e

 
Figure 5. Convergence curve of objective function 
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As is shown in Figure5 (a), the objective function value 
of CEQ algorithm can converge to a minimum after a series 
of trial and error process. But it takes a lot of time, which 
cannot meet the power demand in time. From Figure 5 (b) 
after the pre-learning the convergence process of the 
algorithm becomes faster and more stable. The convergence 
time is reduced from12.43s to 0.13s. After the CEQ 
optimization simulation, the reactive power configuration in 
IEEE9 buses system is shown in TABLE Ⅱ. 

TABLE II.  REACTIVE POWER COMPENSATION CAPACITY 

Compensation bus Bus 5 Bus 7 Bus 9 
Input capacity Q(Mvar) 24 28 40 
 
The branch loss, voltage stability component and carbon 

emission lossof IEEE9 system before and after the reactive 
power optimization are compared in TABLE Ⅲ. 

TABLE Ⅲ.  RESULTS COMPARISON BEFORE AND AFTER REACTIVE POWER 
OPTIMIZATION  

  
Branch loss
（MW） 

Voltage Stability 
Component 

CO2 emission 
loss（kg） 

Objective 
function

Before 
optimization 4.95 2.03 3.27 10.25 

After 
optimization 4.81 1.34 3.15 9.3 

 
From the chart above, it is obvious that all the indicators 

have been improved. Among them, the voltage quality 
indicators improved the most, with the performance 
indicator increasing by 33.99%.More over branch loss value 
decreased by 2.83%, carbon emissions decreased by 3.67% 
and total objective function decreased by 9.26 %. 

To validate the algorithm, the results obtained by 100 
times simulations of Q-learning algorithm and CEQ 
algorithm are shown in TABLE Ⅳ. 

TABLE IV. ANALYSIS OF SIMULATION RESULTS  

Algorithm 
Average 

convergence 
time（s） 

The minimum of 
objective 
function 

The varianceof 
objective 
function 

Capacity of 
compensation 

(MVar) 
Q 0.68 9.307 0.0000 92 

CEQ 0.22 9.307 0.0103 92 
 
As table.4 shows, CEQ algorithm obtains optimal 

solution faster than Q-learning algorithm. The average 
convergence time of CEQ algorithm is 0.22s while the 
average convergence time of Q-learning algorithm is 0.68s. 
But the convergence stability of CEQ algorithm is a bit 
worse. So the CEQ algorithm has a short convergence time 
and good convergence stability. It can be applied to online 
multi-section extensions. 

After the adoption of the pre-learning, the CEQ 
algorithm can achieve fast optimization. To further test the 
performance of the algorithm, we change the load section to 
carry on the test. figure 6 shows the convergence curves of 
objective function of Q and CEQ when the system load 
increases by 8%. 
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Figure 6. Convergence curve of each algorithm 

With the load fluctuating slightly, CEQ algorithm still 
can converge quickly to the minimum by the correlated 
equilibrium game between regions. Therefore, the algorithm 
can be further applied to the dynamic load reactive power 
optimization problem with a promising application.  

VI. CONCLUTION 
Multi-regional reactive power optimization model based 

on CEQ cooperative algorithm is proposed in this paper, 
meanwhile CO2 emission loss is considered as one of the 
control objectives which are conducive to low-carbon 
environment. Without knowing the global information of 
power grid, CEQ cooperative algorithm can also solve the 
communication bottleneck problem through correlated 
equilibrium game among areas. Simulation shows that that 
the algorithm can effectively find the optimal solution, and 
has a faster convergence speed. Thus, the algorithm can deal 
with the development trend of smart grid which has good 
prospects. 
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