Some properties and applicatons of (inverse) L_{n-1}-matrices

Yang Chuansheng ${ }^{1, a^{*}}$, Wang Chao ${ }^{1, b}$
${ }^{1}$ School of Mathematics, Zhejiang Ocean University
Zhoushan, Zhejiang Province, P. R. China, 316011
${ }^{\text {a}}$ cshyang@zjou.edu.cn, ${ }^{\text {b }}$ wangchao1321654@163.com

Keywords: $L_{\mathrm{n}-1}$-matrices; inverse $L_{\mathrm{n}-1}-$ matrices; Hadamard product.
Abstract. In this paper we study some combinatorial properties and inequalities of some classes of Z-matrices. These matrices arise in many problems in the mathematical and physical sciences. We show that all (inverse) $L_{\mathrm{n}-1}$-matrices are irreducible and some eigenvalue inequalities of (inverse) $L_{\mathrm{n}-1}$-matrices.

Introduction and Notation

Throughout we deal with $n \times n$ Z-matrices, i.e. real matrices whose off-diagonal entries are nonpositive. These matrices arise in many problems in the mathematical and physical sciences. Some of the best-known subclasses of Z-matrices are the class of M-matrices (introduced by Ostrowski), the class of $L_{\mathrm{n}-1}$-matrices (introduced by Ky Fan and G. A. Johnson), and the class of F_{0} - matrices (introduced by G. A. Johnson). Especially for M-matrices, a large number of properties and characterizations exist. However, the other classes of Z-matrices are also of great interest. In this paper we study some combinatorial properties and inequalities of L_{n-1}-matrices and inverse $L_{\mathrm{n}-1}$-matrices. Firstly we introduce some definitions.

In 1992 Fiedler and Markham [1] introduced the following classification of Z-matrices:
Definition 1 Let L_{s} (for $s=0,1, \ldots, n$) denote the class of matrices consisting of real $n \times n$ matrices which have the form

$$
\begin{equation*}
A=t I-B \text {, where } B \geq 0 \text { and } \rho_{s}(B) \leq t<\rho_{s+1}(B), \tag{1}
\end{equation*}
$$

here

$$
\rho_{s}(B)=\max \{\rho(B): B \text { is an } s \times s \text { principal submatrix of } B\},
$$

and we set $\rho_{0}(B)=-\infty$ and $\rho_{n+1}(B)=\infty$.
The scalar t and the matrix B in (1) are not unique, but every Z-matrix belongs to exactly one set L_{s}. Moreover, none of the class L_{s} is void. However, if one considers a fixed matrix B in (1), some of the class L_{s} can be the same, since we have in general only that

$$
\rho_{1}(B) \leq \rho_{2}(B) \leq \mathrm{L} \leq \rho_{n}(B)
$$

The class L_{n} is just the class of $n \times n$ (singular and nonsingular) M-matrices. The class L_{n-1} is introduced by G. A. Johnson [2], and this class contains the N-matrices defined by Ky Fan [3]. Moreover, the class of $n \times n \quad F_{0}$ - matrices introduced by Johnson [2] is just L_{n-2}. Here we should mention that the classification of Z-matrices given above inherits the dimension of the matrices one considers. If we deal with $n \times n$ matrices, we have $n+1$ classes of Z-matrices, each consisting of matrices of the same dimension.

As proved in [1], for each s with $1 \leq s \leq n-1$, the class L_{s} is equal to the class of Z-matrices for which all principal submatrices of order s are M-matrices, but there exists a principal submatrix of order $s+1$ which is not an M-matrix. Additional properties of some of these classes are given in [4, 5, $6]$.

On the other hand, there has been interest in inverse M-matrices, i.e., any nonsingular matrix $B \geq 0$ whose inverse is an M-matrix. A survey of this topic is given by C. R. Johnson [7]. Thus, it is natural to determine classes of matrices which are inverse Z-matrices. A first step was taken by G. A. Johnson [8], who proved that a matrix of negative type D is an inverse $L_{\mathrm{n}-1}$-matrix. Later, Chen [9]
studied necessary conditions for a matrix to be an inverse F_{0} - matrix; some new results on Z-matrices are in [10].

At last, for two $m \times n$ matrices $A=\left(a_{i j}\right)$ and $B=\left(b_{i j}\right)$, the Hadamard product of $A O B$ is defined and denoted by $A O B=\left(a_{i j} b_{i j}\right)$.

In this paper, we show that all (inverse) $L_{\mathrm{n}-1}-$ matrices are irreducible and some eigenvalue inequalities of (inverse) L_{n-1}-matrices.

Result and proof

In this section, we firstly introduce some combinatorial properties of $\boldsymbol{L}_{\mathrm{n}-1} \mathbf{-}$-matrices and inverse $L_{\mathrm{n}-1}$-matrices.

Theorem 1: All (inverse) $L_{\mathrm{n}-1}$-matrices are irreducible.
Proof: We firstly show that all $L_{\mathrm{n}-1}$-marices are irreducible.
Assume that a $L_{\mathrm{n}-1}$-matrix A is reducible, then there exists a permutation matrix P such that

$$
P^{T} A P=\left(\begin{array}{cc}
A_{1} & A_{2} \tag{2}\\
0 & A_{3}
\end{array}\right)=t I-\left(\begin{array}{cc}
B_{1} & B_{2} \\
0 & B_{3}
\end{array}\right),
$$

where A_{1} and A_{2} are $s \times s(1 \leq s<n)$ and $(n-s) \times(n-s)$ matrices respectively, $B=\left(\begin{array}{cc}B_{1} & B_{2} \\ 0 & B_{3}\end{array}\right) \geq 0$.
Since $A \in L_{n-1}$, then $P^{T} A P \in L_{n-1}$ and $\rho_{n-1}(B) \leq t<\rho(B)$. But $\rho(B)=\max \left\{\rho\left(B_{1}\right), \rho\left(B_{3}\right)\right\}$, then $\rho(B) \leq \rho_{n-1}(B)$, this is a contradiction, so all $L_{\mathrm{n}-1}$-marices are irreducible.

At lastly, we prove that all inverse L_{n-1}-marices are irreducible.
Assume that an inverse $L_{\mathrm{n}-1}$-matrix A is reducible, then there exists a permutation matrix P such that

$$
P^{T} A P=\left(\begin{array}{cc}
A_{1} & A_{2} \tag{3}\\
0 & A_{3}
\end{array}\right)=\AA^{\prime},
$$

then \AA^{\prime} is an inverse $L_{\mathrm{n}-1}$-matrix and \AA° is a $L_{\mathrm{n}-1}$-matrix, but

$$
\AA^{\circ}=\left(\begin{array}{cc}
A_{1} & A_{2} \\
0 & A_{3}
\end{array}\right)^{-1}=\left(\begin{array}{cc}
A_{1}^{-1} & -A_{1}^{-1} A_{2} A_{3}^{-1} \\
0 & A_{3}^{-1}
\end{array}\right)
$$

is reducible. We know that all $L_{\mathrm{n}-1}$-marices are irreducible, this is a contradiction, so all inverse $L_{\mathrm{n}-1}-$ marices are irreducible. This completes the proof of this theorem.

For establishing some results on eigenvalues of (inverse) $L_{\mathrm{n}-1}$-matrices, we need the following lemma.

Lemma 2[11]: Assume that an $n \times n \quad A \geq 0$, then any real eigenvalue λ of A different from $\rho(A)$ satisfies the inequality

$$
\begin{equation*}
\lambda \leq \rho_{\lfloor n / 2\rfloor}(A) \tag{4}
\end{equation*}
$$

If A is positive, then the inequality (4) is strict.

Lemma 3(Gersgorin's theorem): For any $A=\left(a_{i j}\right) \in C^{n \times n}$ and any eigenvalue $\lambda \in \sigma(A)$, there is a positive k in $N=\{1,2, \ldots, n\}$ such that

$$
\begin{equation*}
\left|\lambda-a_{k k}\right| \leq \sum_{j \in N\{k\}}\left|a_{k j}\right|, \tag{5}
\end{equation*}
$$

where $\sigma(A)=\{\lambda \in C: \operatorname{det}(\lambda I-A)=0\}$.
Theorem 4: Let A be an inverse L_{n-1}-matrix, then A has exactly one negative eigenvalue and det $A<0$.

Proof: Since $A^{-1} \in L_{n-1}$, then $A^{-1}=t I-B\left(B \geq 0, \rho_{n-1}(B) \leq t<\rho(B)\right)$, so A^{-1} has a negative eigenvalue $t-\rho(B)$. According to Lemma 1, we know that A^{-1} has no other negative eigenvalues, then A has a negative eigenvalue $(t-\rho(B))^{-1}$, so $\operatorname{det} A<0$. This completes the proof.

Theorem 5: Let $A=\left(a_{i j}\right)_{n \times n}$ be an inverse L_{n-1}-matrix, $A^{-1}=\left(\overline{a_{i j}}\right)_{n \times n}$, then

$$
\begin{equation*}
q\left(A O A^{-1}\right)>\left(\left|a_{i i}\right|-\sum_{j \in N \backslash\{i\}}\left|a_{i j}\right| \frac{\left|a_{j i}\right|+\sum_{k \in N \backslash i, j\}}\left|a_{j k}\right| d_{k}}{\left|a_{j j}\right|}\right)\left|\overline{a_{i i}}\right|, \tag{6}
\end{equation*}
$$

where $d_{k}=\frac{\sum_{j \in N\{k\}}\left|a_{k j}\right|}{\left|a_{k k}\right|}$ and $q(A)=\min \{|\lambda|: \lambda \in \sigma(A)\}$.
Proof: Let $\lambda \in \sigma\left(A \circ A^{-1}\right)$ and $|\lambda|=q\left(A \circ A^{-1}\right)$. According to lemma 3, then there exists a $i \in N$ such that

$$
\left|\lambda-a_{i i} \overline{a_{i i}} \leq \sum_{j \in N \backslash\{i\}}\right| a_{i j} \overline{a_{i j}} \mid,
$$

then

$$
\begin{gathered}
|\lambda| \geq\left|a_{i i} \overline{a_{i i}}\right|-\sum_{j \in N \backslash\{i\}}\left|a_{i j} \overline{a_{i j}}\right| \\
\geq\left|a_{i i} \overline{a_{i i}}\right|-\sum_{j \in N \backslash\{i\}}\left|a_{i j}\right| \sum_{j \in N \backslash\{i\}}\left|a_{i j}\right| \frac{\left|a_{j i}\right|+\sum_{k \in N \backslash\{i, j\}}\left|a_{j k}\right| d_{k}}{\left|a_{j j}\right|}\left|\overline{a_{i i}}\right| \\
=\left(\left|a_{i i}\right|-\sum_{j \in N\{\{i\}}\left|a_{i j}\right| \frac{\left|a_{j i}\right|+\sum_{k \in N \backslash i, j\}}\left|a_{j k}\right| d_{k}}{\left|a_{j j}\right|}\right)\left|\overline{a_{i i}}\right| .
\end{gathered}
$$

This completes the proof of the theorem.

Conclusions

In this paper some combinatorial results and inequalities of some classes of Z-matrices and inverse Z-matrices are given. We show that all (inverse) $L_{\mathrm{n}-1}-$ matrices are irreducible and some eigenvalue inequalities of (inverse) $L_{\mathrm{n}-1}{ }^{-}$matrices. These results have wide applications in the mathematical and physical sciences.

Acknowledgements

This work was supported by grants from Key Laboratory of Oceanographic Big Data Mining \& Application of Zhejiang Province, and the National Natural Science Foundation of China (Nos. 61563321).

References

[1] M. Fiedler and T. L. Markham, A classification of matrices of class Z, Linear Alg. Appl., 173(1992), pp. 115-124.
[2] G. A. Johnson, A generalization of N-matrices, Linear Alg. Appl., 48(1982), pp. 201-217.
[3] Ky Fan, some matrix inequalities, Abh. Math. Sem. Univ. Hamburg, 29(1966), pp.185-196.
[4] A. Berman and R. Plemmons, Nonnegative matrices in the Mathematical Science, Academic, New York, 1979.
[5] R. S. Smith, Some notes on Z-matrices, Linear Alg. Appl., 106(1988), pp. 219-231.
[6] R. S. Smith, Bounds on the spectrum of nonnegative matrices and certain Z-matrices, Linear Alg. Appl., 129(1990), pp. 13-28.
[7] C. R. Johnson, Inverse M-matrices, Linear Alg. Appl., 47(1982), pp. 195-216.
[8] G. A. Johnson, Inverse N_{0}-matrices, Linear Alg. Appl., 64(1985), pp. 215-222.
[9] Ying Chen, Notes on F_{0}-matrices, Linear Alg. Appl., 142(1990), pp. 167-172.
[10] Reinhard Nabben, R. S. Varge, On classes of inverse Z-matrices, Linear Alg. Appl.,223/224(1995), pp. 521-552.
[11] Shmuel Friedland, R. Nabben, On the second real eigenvalue of nonnegative and Z-matrices, Linear Alg. Appl.,255(1997), pp. 303-313.

