Some properties and applicatons of (inverse)*L_{n-1}*-matrices

Yang Chuansheng^{1, a*}, Wang Chao^{1,b}

¹School of Mathematics, Zhejiang Ocean University Zhoushan, Zhejiang Province, P. R. China, 316011 ^acshyang@zjou.edu.cn, ^bwangchao1321654@163.com

Keywords: L_{n-1} -matrices; inverse L_{n-1} -matrices; Hadamard product.

Abstract. In this paper we study some combinatorial properties and inequalities of some classes of Z-matrices. These matrices arise in many problems in the mathematical and physical sciences. We show that all (inverse) L_{n-1} -matrices are irreducible and some eigenvalue inequalities of (inverse) L_{n-1} -matrices.

Introduction and Notation

Throughout we deal with $n \times n$ Z-matrices, i.e. real matrices whose off-diagonal entries are nonpositive. These matrices arise in many problems in the mathematical and physical sciences. Some of the best-known subclasses of Z-matrices are the class of *M*-matrices (introduced by Ostrowski), the class of L_{n-1} -matrices (introduced by Ky Fan and G. A. Johnson), and the class of F_0 – matrices (introduced by G. A. Johnson). Especially for *M*-matrices, a large number of properties and characterizations exist. However, the other classes of Z-matrices are also of great interest. In this paper we study some combinatorial properties and inequalities of L_{n-1} -matrices and inverse L_{n-1} -matrices. Firstly we introduce some definitions.

In 1992 Fiedler and Markham [1] introduced the following classification of Z-matrices:

Definition 1 Let L_s (for s=0,1,...,n) denote the class of matrices consisting of real $n \times n$ matrices which have the form

$$A = tI - B, \text{ where } B \ge 0 \text{ and } r_s(B) \le t < r_{s+1}(B),$$
(1)

here

 $r_s(B) = \max\{r(B) : B \text{ is an } s \times s \text{ principal submatrix of } B\},\$

and we set $r_0(B) = -\infty$ and $r_{n+1}(B) = \infty$.

The scalar t and the matrix B in (1) are not unique, but every Z-matrix belongs to exactly one set L_s . Moreover, none of the class L_s is void. However, if one considers a fixed matrix B in (1), some of the class L_s can be the same, since we have in general only that

$$r_1(B) \le r_2(B) \le \mathbf{L} \le r_n(B)$$

The class L_n is just the class of $n \times n$ (singular and nonsingular) *M*-matrices. The class L_{n-1} is introduced by G. A. Johnson [2], and this class contains the *N*-matrices defined by Ky Fan [3]. Moreover, the class of $n \times n$ F_0 – matrices introduced by Johnson [2] is just L_{n-2} . Here we should mention that the classification of Z-matrices given above inherits the dimension of the matrices one considers. If we deal with $n \times n$ matrices, we have n+1 classes of Z-matrices, each consisting of matrices of the same dimension.

As proved in [1], for each *s* with $1 \le s \le n-1$, the class L_s is equal to the class of *Z*-matrices for which all principal submatrices of order *s* are *M*-matrices, but there exists a principal submatrix of order *s*+1 which is not an *M*-matrix. Additional properties of some of these classes are given in [4, 5, 6].

On the other hand, there has been interest in inverse *M*-matrices, i.e., any nonsingular matrix $B \ge 0$ whose inverse is an M-matrix. A survey of this topic is given by C. R. Johnson [7]. Thus, it is natural to determine classes of matrices which are inverse Z-matrices. A first step was taken by G. A. Johnson [8], who proved that a matrix of negative type D is an inverse L_{n-1} -matrix. Later, Chen [9]

studied necessary conditions for a matrix to be an inverse F_0 – matrix; some new results on Z-matrices are in [10].

At last, for two $m \times n$ matrices $A = (a_{ij})$ and $B = (b_{ij})$, the Hadamard product of $A \circ B$ is defined and denoted by $A \circ B = (a_{ii}b_{ii})$.

In this paper, we show that all (inverse) L_{n-1} -matrices are irreducible and some eigenvalue inequalities of (inverse) L_{n-1} -matrices.

Result and proof

In this section, we firstly introduce some combinatorial properties of L_{n-1} -matrices and inverse L_{n-1} -matrices.

Theorem 1: All (inverse) L_{n-1} -matrices are irreducible.

Proof: We firstly show that all L_{n-1} -marices are irreducible.

Assume that a L_{n-1} -matrix A is reducible, then there exists a permutation matrix P such that

$$P^{T}AP = \begin{pmatrix} A_{1} & A_{2} \\ 0 & A_{3} \end{pmatrix} = tI - \begin{pmatrix} B_{1} & B_{2} \\ 0 & B_{3} \end{pmatrix},$$
(2)

where A_1 and A_2 are $s \times s$ ($1 \le s < n$) and $(n-s) \times (n-s)$ matrices respectively, $B = \begin{pmatrix} B_1 & B_2 \\ 0 & B_3 \end{pmatrix} \ge 0$.

Since $A \in L_{n-1}$, then $P^T A P \in L_{n-1}$ and $r_{n-1}(B) \le t < r(B)$. But $r(B) = \max\{r(B_1), r(B_3)\}$,

then $r(B) \le r_{n-1}(B)$, this is a contradiction, so all L_{n-1} -marices are irreducible.

At lastly, we prove that all inverse L_{n-1} -marices are irreducible.

Assume that an inverse L_{n-1} -matrix A is reducible, then there exists a permutation matrix P such that

$$P^{T}AP = \begin{pmatrix} A_{1} & A_{2} \\ 0 & A_{3} \end{pmatrix} = \mathcal{A},$$
(3)

then \mathcal{A} is an inverse L_{n-1} -matrix and \mathcal{A}^{-1} is a L_{n-1} -matrix, but

$$\mathbf{A} \mathbf{\sigma}^{-1} = \begin{pmatrix} A_1 & A_2 \\ 0 & A_3 \end{pmatrix}^{-1} = \begin{pmatrix} A_1^{-1} & -A_1^{-1}A_2A_3^{-1} \\ 0 & A_3^{-1} \end{pmatrix}$$

is reducible. We know that all L_{n-1} -marices are irreducible, this is a contradiction, so all inverse L_{n-1} -marices are irreducible. This completes the proof of this theorem.

For establishing some results on eigenvalues of (inverse) L_{n-1} -matrices, we need the following lemma.

Lemma 2[11]: Assume that an $n \times n$ $A \ge 0$, then any real eigenvalue l of A different from r(A) satisfies the inequality

$$l \le r_{\lfloor n/2 \rfloor}(A), \tag{4}$$

If A is positive, then the inequality (4) is strict.

Lemma 3(Gersgorin's theorem): For any $A = (a_{ij}) \in C^{n \times n}$ and any eigenvalue $l \in S(A)$, there is a positive k in $N = \{1, 2, ..., n\}$ such that

$$|I - a_{kk}| \leq \sum_{j \in N \mid \{k\}} |a_{kj}|, \tag{5}$$

where $s(A) = \{l \in C : \det(l I - A) = 0\}$.

Theorem 4: Let *A* be an inverse L_{n-1} -matrix, then *A* has exactly one negative eigenvalue and det A < 0.

Proof: Since $A^{-1} \in L_{n-1}$, then $A^{-1} = tI - B$ $(B \ge 0, r_{n-1}(B) \le t < r(B))$, so A^{-1} has a negative eigenvalue t - r(B). According to Lemma 1, we know that A^{-1} has no other negative eigenvalues, then A has a negative eigenvalue $(t - r(B))^{-1}$, so det A < 0. This completes the proof.

Theorem 5: Let $A = (a_{ij})_{n \times n}$ be an inverse L_{n-1} -matrix, $A^{-1} = (\overline{a_{ij}})_{n \times n}$, then

$$q(A \mathbf{0} A^{-1}) > \left(|a_{ii}| - \sum_{j \in N \setminus \{i\}} |a_{ij}| \frac{|a_{ji}| + \sum_{k \in N \setminus \{i,j\}} |a_{jk}| d_k}{|a_{jj}|} \right) |\overline{a_{ii}}|,$$
(6)
where $d_k = \frac{\sum_{j \in N \setminus \{k\}} |a_{kj}|}{|a_{kk}|}$ and $q(A) = \min\{|I|: I \in S(A)\}.$

Proof: Let $l \in s(A \circ A^{-1})$ and $|l| = q(A \circ A^{-1})$. According to lemma 3, then there exists a $i \in N$ such that

$$|l-a_{ii}\overline{a_{ii}}| \leq \sum_{j \in N \setminus \{i\}} |a_{ij}\overline{a_{ij}}|,$$

then

$$|1| \ge |a_{ii}\overline{a_{ii}}| - \sum_{j \in N \setminus \{i\}} |a_{ij}\overline{a_{ij}}|$$

$$\geq |a_{ii}\overline{a_{ii}}| - \sum_{j \in N \setminus \{i\}} |a_{ij}| \sum_{j \in N \setminus \{i\}} |a_{ij}| \frac{|a_{ji}| + \sum_{k \in N \setminus \{i,j\}} |a_{jk}| d_k}{|a_{jj}|} |\overline{a_{ii}}| = \left(|a_{ii}| - \sum_{j \in N \setminus \{i\}} |a_{ij}| \frac{|a_{ji}| + \sum_{k \in N \setminus \{i,j\}} |a_{jk}| d_k}{|a_{jj}|} \right) |\overline{a_{ii}}|.$$

This completes the proof of the theorem.

Conclusions

In this paper some combinatorial results and inequalities of some classes of Z-matrices and inverse Z-matrices are given. We show that all (inverse) L_{n-1} - matrices are irreducible and some eigenvalue inequalities of (inverse) L_{n-1} - matrices. These results have wide applications in the mathematical and physical sciences.

Acknowledgements

This work was supported by grants from Key Laboratory of Oceanographic Big Data Mining & Application of Zhejiang Province, and the National Natural Science Foundation of China (Nos. 61563321).

References

- M. Fiedler and T. L. Markham, A classification of matrices of class Z, Linear Alg. Appl., 173(1992), pp. 115-124.
- [2] G. A. Johnson, A generalization of N-matrices, Linear Alg. Appl., 48(1982), pp. 201-217.
- [3] Ky Fan, some matrix inequalities, Abh. Math. Sem. Univ. Hamburg, 29(1966), pp.185-196.
- [4] A. Berman and R. Plemmons, Nonnegative matrices in the Mathematical Science, Academic, New York, 1979.
- [5] R. S. Smith, Some notes on Z-matrices, Linear Alg. Appl., 106(1988), pp. 219-231.
- [6] R. S. Smith, Bounds on the spectrum of nonnegative matrices and certain Z-matrices, Linear Alg. Appl., 129(1990), pp. 13-28.
- [7] C. R. Johnson, Inverse *M*-matrices, Linear Alg. Appl., 47(1982), pp. 195-216.
- [8] G. A. Johnson, Inverse N₀-matrices, Linear Alg. Appl., 64(1985), pp. 215-222.
- [9] Ying Chen, Notes on F_0 -matrices, Linear Alg. Appl., 142(1990), pp. 167-172.
- [10] Reinhard Nabben, R. S. Varge, On classes of inverse Z-matrices, Linear Alg. Appl.,223/224(1995), pp. 521-552.
- [11] Shmuel Friedland, R. Nabben, On the second real eigenvalue of nonnegative and Z-matrices, Linear Alg. Appl.,255(1997), pp. 303-313.