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Abstract: This paper focuses on how to design the robust beamforming vectors of multiple 
peer-to-peer relay networks. In the context of imperfect channel state information at the relays, our 
goal is to minimize the transmit power at relay nodes subject to the quality of service at each receiver. 
A method based on real value Lorentz-positive maps and linear matrix inequalities is proposed, which 
converts the transmit power minimization problem at relay nodes into a convex optimization problem. 
The proposed method overcomes the disadvantages of traditional methods based on semi-definite 
programming relaxation, which sometimes result in solutions with rank greater than one. Simulation 
results show that the solution of the proposed method is consistent with those of conventional method 
based on semi-definite programming relaxation. 

Introduction 
In recent years, collaborative relay beamforming algorithms for wireless communication networks 

with perfect channel state information(CSI) has been well studied to enhance the utilization of the 
network resources[1-3]. In these networks, multiple source-destination pairs (peer-to-peer) typically 
share a channel. 

For instance, a method based on semidefinite programming relaxation was proposed to calculate 
the distributed relay beamforming weights in [2]. To minimize the total transmit power of the network 
subject to quality-of-service(Qos) constraints at each destination, the problem of joint source power 
control and general rank relay matrix design was solved in [3]. 

However, since in practice estimation errors and quantization errors in CSI are inevitable, they 
should be considered in system design. One approach is to consider the worst-case based optimization 
that restricts the channel errors in a certain bounded region[4-6]. Another approach is the probabilistic 
approach, in which QoS is guaranteed in a probabilistic sense[7,8]. 

The first approach usually employs semi-definite programming relaxation to tackle the problem of 
infinite constraints due to CSI errors, which can not guarantee a rank-one optimal solution. In the case 
of solution with a general rank, a randomization procedure has to be utilized to approximate a rank-1 
matrix. 

In order to overcome this disadvantage, a method based on real value Lorentz-positive maps and 
linear matrix inequalities is proposed, which converts the transmit power minimization problem at relay 
nodes into a convex optimization problem, which can then be solved efficiently with convex software. 
Specifically, we model channel estimation error of the second hop as a Gaussian random vector with 
known statistical distribution. The objective is to minimize the total transmit power at relays subject to 
QoS constraints at each receiver. 

Problem formulation 
Consider a network where  K  source(S)–destination(D) pairs communicate through a set of M  

distributed relays { iR }, as shown in Fig. 1. Each node in the network is assumed to have a single 
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antenna, and there is no direct link between each （ kS ， kD ）pair. We denote source- k  and 
destination- k  by kS  and kD , respectively. The received signal in the first time slot at iR  is 

             i
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                                                               (1) 

where ks  is the data symbol transmitted from kS , kig  is the Rayleigh flat fading channel from kS  to 

iR , and in  is the zero mean circularly symmetric Gaussian noise at each iR  with variance 2
Rσ . 

Without loss of generality, we assume that 0}{ =ksE , kk psE =}{ 2 , and different ks ’s are 
independent from each other. Due to the distributed nature, each iR  multiplies the received signal by a 
scalar weight iw  and then forwards it to the destination. 

 
Fig. 1  A relay network with K source-destination pairs and M relays 

The signal received at kD  in the second time slot is  
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where ikh  is the Rayleigh flat-fading channel from iR  to kD , and kz ~ ),0( 2
DCN σ  is the noise at kD . 

Note that independence among channels }{ lig  and }{ ikh  is also assumed. The SINR at kD  can be 
expressed as 
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The average total power transmitted at relays is 
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The optimization problem with perfect CSI can be mathematically formulated as 
Tw

P
i }{

min                                                                   (5a) 

KkSINRts kk ,,2,1,.. L=≥ γ                                                (5b) 
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where kγ  is the predefined threshold. The solution to (5) has been developed in [2] by applying 
semidefinite relaxation technique. 

Since channels }{ kig  can be directly estimated at each iR , and knowledge of channels }{ ikh  at 

iR  depends upon the feedback from }{ kD , the level of uncertainty is much higher in the iR  to kD  links. 
To account for this imperfection, the channel knowledge available at each relay is modeled as 

k k k= +h h δ , where H
1 2[ , , , ]k k k Mkh h h=h L , kh  is the estimate of kh , and k kε≤δ  is the 

corresponding error.  
        For convenience, let us introduce variables in vector notation, 

        T
1 2([ , , , ] )k k k k kMG p diag g g g= L                                        (6a) 

 
T

1 2[ , , , ]Mw w w=w L                                                             (6b) 

k kG=v w                                                                               (6c) 
T[0, ,0, ,0, ,0]i iw=w% L L  ,( 1,2, ,i M= L )                             (6d) 

Therefore（3）is equivalent to 
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With imperfect CSI, the optimization problem is expressed as 
Tw
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:k∀δ k kε≤δ , Kk ,,2,1 L=                                   (8c) 
Another statement of (8) is 
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Robust optimization based on Lorentz-positive maps 

   First we rewrite (9) into a problem with real-valued design variables. We write w as 1 2j= +w w w ，
where 1 ( )real=w w is the real part of w , 2 ( )imag=w w is the imaginary part of w . 

Obviously 1
MR∈w and 2

MR∈w 。 Likewise, we define 1 2k k kj= +h h h , 1 2k k kj= +δ δ δ 。

1 2k k kj= +w w w% % %  1 2k k kj= +v v v , ( 1, 2, ,k M= L )。 

Let’s define ,1 11 1,1 1,1 1[ , , , , , ]k k k K− − +=V v v v vL L ， ,2 12 1,2 1,2 2[ , , , , , ]k k k K− − +=V v v v vL L , 

define 1 11 21 1[ , , , ]M=W w w w% % % %L ， 2 12 22 2[ , , , ]M=W w w w% % % %L , 
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define T
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Thus（9）can be expressed as the following real-valued problem： 
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where KL represents K -dimensional Lorentz cone, for an arbitrary 1( , , ) K
Kx x R= ∈x L , it is defined as 

{ }2 2
1 2|K K

KL R x x x= ∈ ≥ + +x L . 

Define [ ]k k k kε=B c C ， T T
1 2[1, , ]k k k=δ δ δ% ，we obtain the equivalent expression of  (9） as 

Tw
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2( ) 2 1. . ,M K M
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In order to solve  (11), we define the following set 

{ }2( ) (2 1) 2( ) 2 1| ,M K M M K M
k k k kL L L+ × + + +Β = ∈ ∈ ∀ ∈B B y y                             (12) 

From reference [9] we know the set Β in (12) is equivalent to the matrix kB being Lorentz-positive, 
namely 

2( ) 2 10, ,T M K M
k k k k kL L+ +≥ ∀ ∈ ∀ ∈x Β y x y                                       (13) 

The set Β in (12) of all Lorentz-positive matrices forms a closed convex cone, which has an LMI 
description. 

Furthermore, (13) is equivalent to the existence of 2( ) 1,2k M K M
⊥

+ −∈X l which satisfies[9] 
(2( ) 1)*2ˆ( ) M K M

k kA + −
++ ∈B X S                                                    (14) 

Where N
+S denotes N N× positive semidefinite symmetric matrices， ,N M

⊥l stands for NM NM×  

symmetric matrices， which consist of N N× skew-symmetric blocks of dimension M M× . 
ˆ( )A G refers to the arrow matrix ofG [9] . Therefore, the optimization problem in（11）is converted to 

Tw
P

i }{
min                                                            (15a) 

ˆ. . ( )k ks t A + ≥B X 0  ，   Kk ,,2,1 L=                               (15b) 
                    2( ) 1,2k M K M

⊥
+ −∈X l                                                        (15c) 

Numerical Results 
In this section, we numerically examine the performance of our proposed robust beamforming 

design. The method in [4] is named as SDR（Semi-Definite Relaxation），our proposed method shown 
in (15) is named as LPM(Lorentz-Positive Map). In the simulations, we compare the performance of 
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these two methods as well as with the perfect CSI case. All results are averaged over 1000 Monte 
Carlo simulation runs. 

In all examples, the parameters are set as, 3K = ， 8M = , 2 2 0.1R Dσ σ= = . The norm of all channel 

estimates is assumed to be one, namely
2

1k =h ，and we assume 1kp = ，（ Kk ,,2,1 L= ）, error 

vector k kε ε= h . 
      In Fig. 2 and Fig. 3, we plot the minimum average total transmit power of the relay nodes versus 
the target SINR with 8M =  for different values of 0.01ε = and 0.04ε = . In both figures it can be seen 
that more transmit power is needed when the required SINR at the destination nodes is higher, which 
conforms to our common sense. To meet the same SINR requirement at the destination nodes, LPM 
needs a little more transmit power than SDR, which is rather negligible. 

           
Fig. 2 Performance of the proposed method                Fig.3 Performance of the proposed method 
          ( 0.01ε = , 8M = )                                                            ( 0.04ε = , 8M = ) 

 

Conclusions 
This paper proposes a robust beamforming method for multiple peer-to-peer relay networks. This 

method solves the transmit power minimization problem at relay nodes subject to the quality of service 
at each receiver in the context of imperfect channel state information at the relays. The proposed 
method is based on real value Lorentz-positive maps and linear matrix inequalities, which converts the 
transmit power minimization problem at relay nodes into a convex optimization problem. The 
proposed method overcomes the disadvantages of traditional methods based on semi-definite 
programming relaxation, which sometimes result in solutions with rank greater than one. Simulation 
results show that the solutions of the proposed method is consistent with those of conventional method 
based on semi-definite programming relaxation. 

Acknowledgment 
This study was partially supported by the National natural science foundation of China under grant 

No. U1404615 and the natural science foundation of Henan province in China under grant No. 
142300410343. 

References 
[1] L. Chen, K. Wong, H. Chen, Ju Liu, etc. Optimizing transmitter-receiver collaborative-relay 
beamforming with perfect CSI. IEEE Communications Letters, 2011, 15(3): 314–316. 
[2] S. Fazeli-Dehkordy, S. Shahbazpanahi, and S. Gazor. Multiple peer-to-peer communications using 
a network of relays. IEEE Transactions On Signal Processing, 2009, 57(8): 3053–3062. 

699



 

[3] K. Zarifi, A. Ghrayeb, and S. Affes. Jointly optimal source power control and relay matrix design in 
multipoint-to-multipoint cooperative communication network. IEEE Transactions On Signal 
Processing, 2011,59(9): 4313–4330. 
[4] D. Zheng, J. Liu, K. Wong, He Chen, etc. Robust peer-to-peer collaborative-relay beamforming 
with ellipsoidal CSI uncertainties. IEEE Communications Letters, 2012,16(4): 442–443. 
[5] Seyed Hamid Safavi. Relay Beamforming in Cognitive Two-Way Networks with Imperfect Channel 
State Information. IEEE Wireless Communications Letters,, 2012,1(4): 344-347 
[6] Yi Qin, Ming Ding, Meng Zhang. Relaying Robust Beamforming for Device-to-Device 
Communication With Channel Uncertainty. IEEE Communications Letters, 2014,18(10): 1859-1862 
[7] Dhananjaya Ponukumati, Feifei Gao, and Chengwen Xing. Robust Peer-to-Peer Relay 
Beamforming: A Probabilistic Approach. IEEE Communications Letters, 2013, 17(2): 305-308 
[8] Wei-Chiang Li, Tsung-Hui Chang, CheLin, etc. Coordinated Beamforming for Multiuser MISO 
Interference Channel Under Rate Outage Constraints. IEEE Transactions On Signal Processing,2013, 
61(5): 1087-1103 
[9] Yongwei Huang, Daniel P. Palomar, Shuzhong Zhang. Lorentz-Positive Maps and Quadratic 
Matrix Inequalities With Applications to Robust MISO Transmit Beamforming. IEEE Transactions On 
Signal Processing, 2013,61(5): 1121-1130 

700




