
Get Network’s Disjoint MPs Based on Discrete Events Simulation

Jian Tang1,a, Tao Han2,b*, Jianhu Yuan3,c, Faming Shao4,d

1College of Field Engineering, PLA University of Science and Technology, Nanjing 210007, China
algdx_tj@163.com

b563524748@qq.com
cyjhnj1@163.com

dshaofaming@163.com

Keywords: Network’s reliability; Disjoint Minimal Path sets; Discrete event simulation;
SimEvents
Abstract. From the point of message transmission and processing, this paper puts forward a new
disjoint Minimal Path sets (MPs) algorithm to get the disjoint MPs of networks and trys to realize
it by means of Discrete Events Simulation (DES). In the new method, the arcs of CoA network
are regarded as processing units, nodes as storage units, and network as message transmission
network. Taking SimEvents as the platform, the modeling idea of nodes, arcs and message
transmission network are described in detail. An example verifies the correctness of the
processing rules and the feasibility of using DES to generate the disjoint MPs automatically.

Introduction

The Minimal Path sets (MPs) methods is an important kind of methods used to compute
network’s reliability[1-4]. Traditionally, the first step of MPs methods is to obtain the network’s
MPs and then use total probability formula to calculate the reliability[5]. However, network’s
MPs are always intersected with each other，if using total probability formula[6] to calculate the
reliability based on MPs, the equation will contain a large number of redundant items. So the
second step of MPs methods is always to use Inclusion-exclusion principle[7][8], Sum of Disjoint
Products (SDP)[9-12], Binary Decision Diagram (BDD)[13-15] and other disjoint algorithm to
get the disjoint MPs. Obviously, the two-step methods are cumbersome too and even prone to
occur combinational explosion[16]. So some scholars dedicated themselves to find out a way to
get disjoint MPs without resorting to MPs[17-22]. In literature [23], Wu put forward an algorithm
to directly get all the disjoint MPs by messages’ continual transmission according to a set of rules.
Wu’s algorithm has a characteristic of distributed storage and processing, which inspires us to
realize it by means of Discrete Event Simulation (DES). So, this paper will propose a new version
of Wu’s from the point of DES; and then try to realize it in SimEvents, a discrete event
simulation platform.

Notations

(,)G V A is a acyclic network, { , 1,2,..., }V i i n= = is the node set; { , 1, , }kA a k m= = … is the
arc set; n and m are respectively the number of nodes and arcs. Among the nodes, 1 is the
source node, n is the terminal node, the others are middle nodes. For any arc, there is a mapping

: A V Vψ → × , () (,)ka i jψ = , wherein, i is the starting node of ka , j is the end node of ka .

International Conference on Information Technology and Management Innovation (ICITMI 2015)

© 2015. The authors - Published by Atlantis Press 758

rm is a message composed of the index of arcs, which could be ka or ka (1,2, ,k m= …);
0m is an empty message; iM is the set of messages stored in node i , { }, 1,i r iM m r ,n= = … ; iIV

is the set of leading nodes of node i (i V∈ , 1i ≠); iIA is the set of leading arcs of node i
(i V∈ , 1i ≠);

*
iIA is set of node i ’s valid leading arcs for rm ; iOV is set of following nodes

of node i (i V∈ , i n≠); iOA is the set of following arcs of node i (i V∈ , i n≠),
{ }() (,),i k k iOA a a i j j OVψ= = ∈ ; *

iOA is the set of node i ’s valid following arcs for rm . In Error!
Reference source not found., the standard of how to judge *

iIA and *
iOA will be presented in

detail.

Disjoint MPs algorithm based on message transmission and processing

In Fig. ，there is a network called Network 1, in which, 1 is the initial node, 3 is the terminal node
and 2 is the middle node. The disjoint MPs algorithm is shown in Eq. 1[23].

Fig. 1 Network 1

() ()

() (())

S G B G GB A C D A C D B

A C CD A A C D B AC ACD AB ACDB

= + = + = + + +

= + + + + = + + +
 (1)

We can let an empty message depart from the network’s node 1, and go to node 3 along path
1-2-3. When the message goes through A to node 2, it will be rewritten as A and stored in node
2. Then, it will continue to be transmitted to node 3 and rewritten as AH , i.e. ()A C D+ , and
stored in node 3. In the reverse direction, the message A stored in node 2 will be transmitted
along the same path back to its leading node, i.e. 1, and rewritten as A . Then A will be
transmitted along another path, i.e. 1-3 to node 3 and rewritten as AB . As for C D+ , similarly,
an empty message will depart from 2, and then be transmitted to 3 through arc C and rewritten as
C . Then C will be transmitted reversely to 2 along the original path and rewritten as . Then
C will be transmitted to 3 along the other path parallel to arc C, i.e. arc D, and rewritten as CD .

Obviously, if the transmission and processing rules are formulated correctly, the network’s
disjoint MPs could be generated automatically during the message transmission in the network.

The message will be transmitted and processed by the following steps:
Step 1. Initialize the message set iM for each node.
Let 1 0{ }M m= , 0m is an empty message; i V∀ ∈ and 1i ≠ , let iM = ∅ .
Step 2. i V∀ ∈ and i n≠ , transmit and process each message in iM forward and backward

in accordance with the following rules:
(2.1) Transmit rm forward.
(2.1.1) Determine *

iOA for rm ’s forward transmission. The rule is: k ia OA∀ ∈ , if rm
contains neither ka nor ka , let *

k ia OA∈ ; otherwise, *
k ia OA∉ .

(2.2.2) In a certain order, label the arcs in *
iOA as

1ka ,
2ka , …, temporarily.

A

B

1

2

C

D 3
G H

759

(2.2.3) Transmit rm to ka ’s end node j in the aforementioned order and rewrite rm in
obedience to the following rules: Firstly, transmit rm to 1ka , rewrite it as 1r km a , and store it to

1ka ’s end node 1j ; secondly, transmit rm to 2ka , rewrite it as 1 2r k km a a , and store the new rm
to 2ka ’s end node 2j ; similarly, transmit rm to the third, fourth, … arcs in *

iOA , rewrite it as
1 2 3r k k km a a a , 1 2 3 4r k k k km a a a a …, and store the new rm respectively to node 3j , 4j , ….

(2.2) Transmit rm backward.
(2.2.1) Determine *

iIA for rm ’s backward transmission. The rule is: k ib IA∀ ∈ , if and only if
rm contains kb , let *

k ib IA∈ ; otherwise, *
k ib IA∉ .

(2.2.2) Temporarily, label the arcs in iOA as 1ka , 2ka , ….
(2.2.2) Transmit rm to each arc in *

iIA one by one in the reverse direction, and the rule is:
Firstly, scan the first arc in iOA , judge whether rm contains 1ka or 1ka . If the answer is ‘No’,
rewrite rm as 1r km a , if ‘Yes’, give up rewriting and keep rm unchanged; then, turn to the
second arc 2ka , and the rewriting rule is the same as 1ka ; finally, after all the arcs in iOA have
been scanned, store the new rm in the leading node of kb .

(2.3) Delete rm from iM .
Step 3: Repeat step 2 until i V∀ ∈ and i n≠ , iM = ∅ .

Realization by means of Discrete Event Simulation in SimEvetns

Discrete Events Simulation will be tried to realize the new algorithm. The basic idea is to regard:
(1) network as a discrete event system;
(2) arc as processing unit, whose function is to transmit and rewrite messages;
(3) node as storage unit used to temporarily store the messages arriving to it;
(4) entity as message carrier, who can carry message moving in the network;
(5) message as an attribute of entity. It can be rewritten during the simulation.
In SimEvents, entities can pass through all blocks during a simulation, and a block can carry

out operations on entities. The data carried by entity are called attribute. In the following
depiction, block and port will be denoted by Bold and attribute will be denoted by Italics.

Take the network in Fig. as an example, we’ll respectively set models for three kinds of node,
the forward-transmission model of iOA and the backward-transmission model of iIA .

Fig. 2 Network 2

Node model
The main function of nodes is to store the messages transmitted into it temporarily. During the

simulation, message will be treated as an attribute of entity, whose attribute name is Message.
1. Middle node
Taking node 2 in network 2 as an example, the composition of middle node is shown in Fig. .

On the arrival of each entity, Get Attribute will get the value of Message, and notify
Events-Based Entity Generator to generate a new entity. Then Set Attribute 1 will assign the

A

F

1

2
B

D

3

E

G

D

4

5

760

value of Message to the new entity and put it into FIFO Queue to wait for further processing.
Obviously, FIFO Queue acts as a temporary storage unit. The old entity will be discarded
through Entity Sink. Before the new entity goes into the node’s following/leading arcs, Set
Attribute 2 will inform it of which arcs are its following/leading arcs by assigning their numbers
to entities’ PostArc and PreArc respectively.

5
BackOut

4
ForOut

3
BackIn2

2
BackIn1

1
ForIn

IN OUT

Set Attribute2
PreArc
PostArc

A1

IN
OUT

Set Attribute1

IN
OUT1

OUT2

Replicate
IN1
IN2
IN3

OUT

Path Combiner

A1
IN

OUT

Get Attribute

IN OUT

FIFO Queue2

#n
IN

OUT

FIFO Queue1

vc OUT

Event-Based
Entity Generator

IN

Entity Sink

Fig. 3 Middle node

Besides the basic function block, there are still three entity input ports supplied by Path
Combiner and two output ports supplied by Replicate. ForIn is the input port set for its leading
arc. Because there is only one leading arc A in 2IA , so only one input port is configured. BackIn1
and BackIn2 are set for its two following arcs B and D. Among the two output ports, one is
ForOut, which is used to transmit entity forward to the following arc, the other is BackOut,
which is used to transmit entities backward to the leading arcs.

2. Source node
The composition of source node is similar to the middle node except that there is only one

output port. Because the source node is the end of messages’ backward transmission, from which
messages will be transmitted forward rather than backward.

3. Terminal node
Terminal node is the destination of all messages, it will only accept but not output entities.

Therefore, it does not need to generate new entity.

2
Con_C

1
Con_G

IN1

IN2
OUT

Path Combiner

A1
IN

OUT
Get Attribute IN

Entity Sink

DisjointMPs

Discrete Event Signal
to Workspace

Fig. 4 Terminal node

The terminal node of Network 2 is 5, its composition is shown in Fig. . Path Combiner is used
to provide input ports for the entities coming from the leading arcs. The messages carried by
entities will be obtained by Get Attribute, and then output to Matlab’s workspace.

Arc model

The main function of arc is to transmit and rewrite messages according to the rules mentioned
in Error! Reference source not found.. Because messages will be transmitted not only forward
but also backward in arcs, and the transmission and the rewriting rules are completely different,
so we’ll establish a forward-transmission model for iOA and a back-transmission model for iIA .

1. Forward-transmission model for iOA
Take 2OA as an example, whose model is shown in Fig. and the basic modeling ideas are:

761

(1) For each message, Attribute Function1 is used to get the number of arcs included in
according to entity’s two attributes, PostArc and Message, and then determine the value of
RouteIndex. If *

iOA is ∅ , RouteIndex=2, and the entity will be transmitted through OUT2 of
Output Switch; Otherwise, RouteIndex=1, and the entity will be transmitted through OUT1 of
Output Switch for further processing.

(2) Set Attribute will initialize entity’s ValidTransArc and TransArcNumber to 0,
RewtrittenIndex to 2. In the following processing, ValidTransArc will be used to record the
number of arcs in which the message carried by entity has been rewritten, TransArcNumber will
be used to record the total number of arcs the entity has gone through, and RewtrittenIndex will be
used to record whether the message has been rewritten after it leaves its leading node.

(3) In 2OA , we appoint B as the first arc and D the second one in advance. The rewriting
function of arc B and D will be respectively implemented by Attribute Function2 and Attribute
Function3. The main operations on each message include:
① When the entity goes into the first arc, i.e. B, Attribute Function2 will judge whether the

message contains B or B . If the answer is ‘No’, the message will be rewritten in accordance
with the rules described in Error! Reference source not found.. Then RewrittenIndex=1,
ValidTransArc= ValidTransArc+1. If the answer is ‘Yes’, the message will not be rewritten. After
all the operations have been finished, TransArcNumber= TransArcNumber+1.
② Then, the entity will be further transmitted into two routes provided by. The first route is

connected with Output Switch1 which will decide the output port according to the value of
RewrittenIndex. If RewrittenIndex is 1, the entity will be transmitted to arc B’s end node through
Con_B; otherwise, it will be discarded by Entity Sink. The second route is connected with
Attribute Function3, which will perform the processing function of the next arc.
③ After the entity goes into the second arc, i.e. arc D, the operations in Attribute Function3

are the same as ①, and the following operations are the same as ②.

RouteIndex

ValidArcNumber
TransArcNumber
RewrittenIndex

Arc B

Arc DRoute2

Route1

3
Con_D

2
Con_B

1
Input

IN OUT

Single Server3

IN OUT

Single Server2

IN OUT

Single Server1

IN OUT

Set Attribute

IN
OUT1

OUT2

Replicate

IN
OUT1

OUT2
Output Switch2

IN
OUT1

OUT2
Output Switch1

IN
OUT1

OUT2
Output Switch

IN

Entity Sink2

IN

Entity Sink1

IN

Entity Sink

Attribute Function3

Attribute Function2

Attribute Function1

Fig. 5 Forward-transmission model of arcs

2. Backward-transmission model for iIA
The backward-transmission model is similar to the forward-transmission. The model shown in

Fig. is the model of 3IA , which contains arc D and F.
(1) Attribute Function is used to select the route of the entity coming from node 3. If *

3IA is
∅ , RouteIndex=1; otherwise, RouteIndex=2, the entity will be discarded by Entity Sink.

(2) Set Attribute will initialize entity’s attribute RewritenIndex to 2, and Replicate will
provide an output port for each following arc of node 3.

(3) Attribute Function_D and Attribute Function_F will execute the message processing
function respectively of arc D and F, and record whether Message has been rewritten. If the

762

answer is ‘Yes’, RewritenIndex=1; otherwise, 2. Output Switch1 and Output Switch2 will
determine the route to which entity will go according to RewritenIndex. If RewritenIndex=1, the
entity will be transmitted through Out_D or Out_F to the leading node to wait for further
processing. Otherwise, it will be discarded.

RouteIndex

RewrittenIndex

Back_ArcD

Back_ArcF

3
Out_F

2
Out_D

1
In

IN OUT

Single Server2

IN OUT

Single Server1

IN OUT

Single Server

IN OUT

Set Attribute

IN
OUT1

OUT2

Replicate

IN
OUT1

OUT2
Output Switch2

IN
OUT1

OUT2
Output Switch1

IN
OUT1

OUT2
Output Switch

IN

Entity Sink2

IN

Entity Sink1

IN

Entity Sink

Attribute Function_F

Attribute Function_D

Attribute Function

Fig. 6 Backward-transmission model of arcs

Network model
Network 2’s transmission model is shown in Fig. , an entity will enter it from port Conn at the

beginning of simulation. Intuitively, the network is mainly composed of node subsystem, arc’s
forward-transmission subsystem and arc’s backward-transmission subsystem. They are connected
by lines according to the relationship between the nodes, iIA and iOA . For example, the entities
output from node 3 will be transmitted forward to arc G and E, and backward to arc D and F, so in
Fig. , Node 3’s forward output port ForOut is connected with Arc_G/E, and its backward output
port BackOut is connected with Back_Arc_D/F.

1
Conn

Con_G

Con_C

Node5

ForIn1

ForIn2

ForOut

BackOut

Node4

ForIn1
ForIn2
BackIn

ForOut

BackOut

Node3

ForIn
BackIn1
BackIn2

ForOut

BackOut

Node2

ForIn
BackIn1
BackIn2

ForOut

Node1

In
Out_D

Out_F

Back_Arc_D/F

In
OutB

OutE

Back_Arc_B/E

InOutA

Back_Arc_A

Input
Con_G

Con_E

Arc_G/E

Input Con_C

Arc_C

Input
Con_B

Con_D

Arc_B/D
In

Con_A

Con_F

Arc_A/F

Fig. 7 Simulation model of Network 2

Simulation results
The simulation results are shown as follows, they are exactly the disjoint MPs of Network 2.
① ABC ② AFG ③ ABDG ④ AFGEC ⑤ ABCDEG ⑥ ABDFG ⑦ ABCDEFG ⑧ ABCDG

⑨ ABCDFG

Conclusion

From the point of DES, this paper proposed a new version of disjoint MPs. Then, in SimEvents,
the simulation model of network was constructed with the consideration of the encapsulation and
reusability of nodes and arcs, which could make the construction of the network model to be
greatly simplified. Through the simulation of the model, the new algorithm was realized and the
disjoint MPs were automatically generated. So the method proposed by this paper provides an
efficient and reliable way for the generation of the disjoint MPs of networks, especially the
great-scale one.

References

[1] Lin JS, Jane CC, Yuan J. On reliability evaluation of a capacitated-flow network in terms of

763

minimal pathsets. Networks 1995; 25(3): 131-138.
[2] Singh B, Ghosh SK. Network reliability evaluation by decomposition. Micro Reliab 1994;

34(5): 925-927.
[3] Shen YL. A new simple algorithm for enumerating all minimal paths and cuts of a graph. Micro

Reliab 1995; 35(6): 973-976.
[4] Lin YK. System reliability evaluation for a multistate supply chain network with failure nodes

using minimal paths. IEEE Trans Reliab 2009; 58(1): 34-40.
[5] West DB. Introduction to graph theory. New Jersey: Prentice Hall Englewood Cliffs; 2001.
[6] Barlow RE, Proschan F, Hunter LC. Mathematical theory of reliability. Philadelphia: SIAM;

1996.
[7] Dohmen K. An improvement of the inclusion-exclusion principle. Archiv der Mathe 1999;

72(4): 298-303.
[8] Dohmen K. Inclusion-exclusion and network reliability. J Combin 1998; 5: 537-544.
[9] Jane CC, Yuan J. A sum of disjoint products algorithm for reliability evaluation of flow

networks. Euro J Oper Res 2001; 131(3): 664-675.
[10] Wilson JM. An improved minimizing algorithm for sum of disjoint products. IEEE Trans

Reliab 1990; 39(1): 42-45.
[11] Locks MO. A minimizing algorithm for sum of disjoint products. IEEE Trans Reliab 1987;

36(4): 445-453.
[12] Yeh WC. An improved sum-of-disjoint-products technique for the symbolic network reliability

analysis with known minimal paths. Reliab Eng Syst Saf 2007; 92(2): 260-268.
[13] Hardy G, Lucet C, Limnios N. K-terminal network reliability measures with binary decision

diagrams. IEEE Trans Reliab 2007; 56(3): 506-515.
[14] Myers A, Rauzy A. Efficient reliability assessment of redundant systems subject to imperfect

fault coverage using binary decision diagrams. IEEE Trans Reliab 2008; 57(2): 336-348.
[15] Singhal M. Binary decision diagram based reliability evaluation. Int J Eng Advan Tech 2012;

2(2): 618-626.
[16] Shi Y F, Lu N, Li HM. An algorithm of network systemreliability based on an improved disjoint

minimal path set. Comp Eng Sci 2011; 33(1): 31-35.
[17] Ahmad SH, Jamil A. A modified technique for computing network reliability. IEEE Trans

Reliab 1987; 36(5): 554-556.
[18] Li DK. New algorithm for computing three-state devices networks reliability by using matrix

coulumn transformation. Comp Simu 2010; 27(3): 362-365.
[19] Levitin G. Reliability evaluation for acyclic consecutively connected networks with multistate

elements. Reliab Eng Syst Saf 2001; 73(2): 137-143.
[20] Yeh WC. A modified universal generating function algorithm for the acyclic binary-state

network reliability. Reliab Eng Syst Saf 2012: 99(3):139-150.
[21] Yeh W C. Multistate-node acyclic network reliability evaluation. Reliab Eng Syst Saf 2002;

78(2): 123-129.
[22] Yeh WC. Multistate-node acyclic networks reliability evaluation based on MC. Reliab Eng Syst

Saf 2003; 81(2): 225-231.
[23] Wu XY, Sha JC. A new algorithm for constructing disjoint minimal path set of network. Syst

Eng Theo Prac 2000; 23(1): 62-66.
[24] Fishman GS. Discrete-event simulation: Modeling, programming, and analysis.New York:

Springer; 2001.

764

