

The Application of Natural Computation for Solving the Traveling
Salesman Problems

 Jiang Huowen1,a Xiong huanliang2,b Zhang Huiyun3,c
1 Collage of Mathematics & Computer Science, Jiangxi Science & Technology Normal University,

Nanchang 330038, China
2 Software College, Jiangxi Agricultural University,Nanchang 330045, China

3Jiangxi Water Resources Institute,Nanchang 330045, China

 aJhw_604@163.com bxionghuanliang@126.com c ashzhhy@126.com

Keywords: Traveling Salesman Problem, natural Computation, Genetic Algorithm, Continuous
Hopfield Algorithm, Ant Colony Optimization Algorithm
Abstract. Traveling Salesman Problems is a classical kind of combined optimization problems.
Solving TSP effectively can produce very important theoretical value in computable theory, and
also has very high applied value in practice. Solving travel salesman problems by using some
traditional algorithms is limited, The article discuss several natural computation methods of solving
travel salesman problems, including solution of genetic algorithm, solution of continuous Hopfield
algorithm and solution of Ant colony optimization algorithm.

Introduction

The travelling salesman problems (TSPs for short) asks the following question: Given a list of cities
and the distances between each pair of cities, how can a salesman travel along the shortest possible
route that visits each city exactly once and returns to the origin city? The TSP can be formulated as
the Hamiltonian circuit problem in graph theory which can be described mathematically as: Assume
D= (ijd) is the distance matrix of a graph, where ijd stores the distance between vertex i and vertex j
contained in the graph, then TSPs seeks for the shortest cycle that visits each vertex exactly once.
The TSPs can be applied to traffic managing, network routing, chip designing and etc., which makes
solving it of practical value. Traditional approaches, such as exhaustive search, greedy algorithm,
dynamic programming and etc., are all faced with the same problem: with the increase of N (the
number of listed cities), the search space of the TSPs grow exponentially, yielding massive amount
of computation and intolerable running time[1]. Natural computation algorithms are based on
adopting some natural principles ，guide and optimize the solution space searching. Natural
computation algorithms have characters such as high parallelism, self-organization, self-adaptation,
self-learning and etc., which make them viable to solve highly complex non-linear problems that
traditional solvers can’t conquer[2]. Three typical natural computation algorithms are applied to
solving TSPs in this paper.

Genetic algorithm for solving TSPs

Genetic algorithm, inspired by Darwin’s evolutionary theory, searches solution space effectively for
the best solution that satisfies predefined stopping criterion(commonly, the algorithm terminates
when either a maximum number of generations has been produced, or a satisfactory fitness level has
been reached for the population) by generating child generation populations through genetic
operations like crossover and mutation. Genetic algorithm, inspired by Darwin’s evolutionary
theory, searches solution space effectively for the best solution that satisfies predefined stopping
criterion(commonly, the algorithm terminates when either a maximum number of generations has
been produced, or a satisfactory fitness level has been reached for the population) by generating

International Conference on Information Technology and Management Innovation (ICITMI 2015)

© 2015. The authors - Published by Atlantis Press 819

child generation populations through genetic operations like crossover and mutation[3].First of all,
we need a encoding scheme to let chromosomes represent permutations of all cities in play. Let’s
suppose that n cities are to be visited, then a possible route can be represented by a integer vector of
size n: 1 2, , , ni i iK , where mi (1≤m≤n)stands for the existence of city m in the route and the vector
holds a full permutation of the integer numbers ranging from 1 to n, that is, each number within the
range appears exactly once in the vector’s elements. Detailed steps of the genetic algorithm for
solving the TSPs are as follows:

(1)Initialize P(0), the initial population, with a population size of N and let t=0;
(2) Select u parents from P(t), the t-th generation population, randomly;
(3) Generate u children of bred by the u parents selected in Step (2) through the genetic operator

of crossover;
(4) Select two individuals from P(t) randomly. Replace one of them with the fittest child

generated in Step (3) and, after applying the genetic operator of mutation on the rest u-1 children,
replace the other one with the fittest individual of the u-1 mutated children;

(5)Repeat Step (2) to Step (4) until all individuals in P(t) are replaced with N newly generated
individuals.

(6)If t<T (the maximum number of generations), then t=t+1 and go to Step (2); If not, regard the
fittest individual in the current population as the best solution.

Continuous hopfield network for solving TSPs

In essence, the TSPs is a combinatorial optimization problem which aims at finding an optimal
object from a finite set of objects. For general combinatorial optimization problem,
let {F x D= ∈ ∣ () 0}g x ≥ denote the feasible region, where D is a finite set composed of limited
decision variables, x F∈ denote x being a candidate solution, :f D R→ denote the objective
function, then the candidate solution *x is said to be an optimal solution for the combinatorial
optimization problem (, ,)D F f if there exists *() min{ ()f x f x= ∣ }x F∈ . (, ,)D F f here denotes

min (),f x (. .s t () 0,g x ≥ .x D∈ ）For a combinatorial optimization problem like TSPs, hopfiled
network can transform the objective function into the energy function of the network, mapping
solutions to the problem onto states of the network[4]. An optimal solution for the problem is
obtained when the network eventually converge to a state that is a local minimum in the energy
function. The detailed procedures of using a Hopfield network to solve the TSP are as follows:

(1) Map states of the neural network onto solutions to the TSP. Construct a neural network of size
n×n, where the state of a neuron represents where a certain city appears in a certain possible route.
To be more exact, let Vxi denote the state of neuron xi, where x(x∈{1,2,…, n}) represents the
appearance of Cx(the x-th city of all listed cities) in the route while i represents that Cx is the i-th city
to be visited in the route; if Vxi=0, then Cx doesn’t appear at the i-th position in the route, which
means other city occupies the i-th position. Hence it can be seen that matrix V of size n×n can well
store the sequence of all listed cities to be visited which leads to a possible route for the TSPs.

(2) Define the energy function of the neural network. The energy function is defined as:

E=E1+E2+E3+E4 , where E1= 2 xi xj
x i j i

A v v
≠

∑ ∑ ∑ (A is a constant and A>0) and it is guaranteed that,

when the number of 1s in each row of matrix V is not greater than 1(which implies that each city is

visited exactly once), E1min=0; E2= 2 xi yi
i x y x

B v v
≠

∑ ∑ ∑ (B is constant and B>0) and it is guaranteed that,

when the number of 1s in each row of matrix V is not greater than 1, E2min=0; E3= 2()
2 xi

x i

C v n−∑ ∑ (C

is constant and C>0) and it is guaranteed that, when the number of 1s in each row of matrix V is n,

820

E3min=0; E4= , 1 , 1()
2 xy xi y i y i

x y x i

D d v v v+ −
≠

+∑ ∑ ∑ (D is constant and D>0) and the definition E4 contains

distance information of valid paths.
(3) With energy function determined, construct the neural network by backstepping. Compare our

energy function with standardized energy function and we have the connection weight over the
edge connecting neuron ix and neuron jy :

, , 1 , 1(1) (1) ()(1)xi yj xy ij ij xy xy j j j j xyT A B C Ddδ δ δ δ δ δ δ+ −= − − − − − − + − where ,ij xyδ δ was defined as
1,
0,ij

i j
other

δ
=

=

,Input bias xiI Cn= .

(4) Setup and run the network. We will obtain an optimal solution when the network converges.
Noting that the formula for calculating ,xi yjT is given above, we have the running equation of the
network as follows:

, 1 , 1

()

()

xi xi
xi xj yi xi

j i y x x ixi

xy y i y i
y x

dU UC A v B v C v n
dt R

D d v v
≠ ≠

+ −
≠

= − − − − −∑ ∑ ∑ ∑

− +∑

Let ()xi xtv g u= , assign proper value to (A, B, C, D) and 0U (which is the initial value), and run the
step iteratively until convergence occurs. In the TSPs, xiv is supposed to be either 0 or 1, but due to
the continuity of hopfield network, xiv changes continuously within [0,1] in practice. In the
revolution process, a minority of neurons output value in an increasing manner while the rest does
otherwise.

Ant colony optimization algorithm for solving TSPs

The ant colony optimization algorithm learns from the foraging behavior of ants, searching for the
global best solution heuristically under the guidance of pheromone until convergence occurs[5].
Research shows: ants are always able to find the best path between their colony and food source,
because the more ants go along a certain path, the more pheromone is laid on the path, resulting in a
better chance of other ants travelling along the path and reinforce it, which eventually leads to the
convergence of all ants picking the best path. Based on the foraging process of ants, procedure of the
algorithm is demonstrated simply as follows: Place m ants randomly at n listed cities. For the first
round of visit, each ant decides which neighboring city to visit next according a strategy of roulette
gaming and visits the selected city. Each ant goes on its journey until all cities are visited. Move the
initial starting city for each ant to the tail of its visit sequence. Thus far, the first round of visit is over
and update pheromone laid on visited paths. Repeat visiting for rounds until the maximum times of
iteration is reached or there exist two solutions that are extremely close to each other.

Assume that there are n cities and m ants in play. Let dij=(i,j=1,2,... ,n) denote the distance
between city i and city j, ()ij tτ denote the intensity of pheromone left on the path between city i and
city j. Each ant’s decision of which neighboring city to visit next is based on the intensity of
pheromone on optional paths，Letting ()k

ijP t represent the probability of ant k moving from city i to

city j, we have: Letting ()k
ijP t represent the probability of ant k moving from city i to city j, we have:

()

[()] [()]
[()] [()]()

0
k

ij ij

k
is ijij s J i

t t
t tP t

α β

α β

τ η

τ η
∈

 ∑=

 , j ()kJ i∈ … ①

821

where k(i)= {1,2,... ,n}-tabuk is the set of cites ant k can go to in the next step . The set tabuk is the
tabu list of ant k which records all the cities that have been visited by the ant k so far. Ant k is said to
finish a round tour, the path of which is a candidate solution to TSPs, if all of the n listed cities are
contained in tabuk (which implies that ant k traversed all n cities) and ant k returns to the city where
its trip started. ijη , called a heuristic factor or visibility, represents the level of expectation of ant k
moving from city i to city j, usually taking the value of the reciprocal of dij. α and β respectively
denote the relative importance of pheromone and that of heuristic factors. Pheromone on each path
is globally updated according to Equation ② below after all ants finished its round trip.

(1) (1)* ()ij ij ijt tτ ρ τ τ+ = − + ∆ …②

1

m k
ij ij

k
τ τ

=
∆ = ∆∑ … ③

where (0ρ ＜ ρ ＜1) denotes the volatility coefficient of pheromone; 1- ρ is the durability
coefficient of pheromone; ijτ∆ represents the total increment of pheromone on the path between city

i and city j in this round of iteration; k
ijτ∆ denotes the pheromone amount left by ant k on the path

between city i and city j in this round of iteration(if ant k didn’t travel along path(i, j), then k
ijτ∆ is 0).

The detailed steps of ant colony optimization algorithm for solving the TSPs are as follows:

(1)Initialize parameters. Let t=0(clock time), ncout=0(counter of iteration), and make assignment
to maximum times of iteration ncoutmax. Place m ants randomly at n cities. Let initial amount of
pheromone on each path ijτ (t)=const, where const is a constant, and ijτ∆ (0)=0；.

(2)Make assignment to counter of iteration: ncout←ncout +l ;
(3)index=1；
(4) Make assignment to the index of the ant in play: k←k+1;
(5) Ant k makes its decision of which neighboring city to visit next, say city j(j ∈{C-tabuk}),

according to probabilities shaped by Formula ①;
(6) Move ant k to city j and add city j into tabuk, tabu list for ant k;
(7)If k<m, which means not all cities are visited in this round of visit, go to step (4). Otherwise go

to step (8).
(8)Update pheromone on each visited path according to Formula ② and Formula ③.
(9)If stopping rule, such as ncout≥ncoutmax , has been reached, then stop and output the path

picked by the majority of ants. Otherwise empty tabu lists go to step (2).

Conclusions

Natural computation algorithms are different from traditional ones in many aspects, intelligence and
essential parallelism in particular. Intelligence includes self-organization, self-adaptation,
self-learning and etc. The essential parallelism lies in two aspects: One is inherent parallelism, that
is, the nature of natural computation itself fits the requirement of massive parallel processing; The
other is implicit parallelisms, which means that natural computation algorithms search for the best
solution in a population using a iterative progress guided by information exchange. So its
algorithms can process searching in approximate 3()O N times with computing operations
proportional to N(the population size), which makes them good solvers for intelligent optimization
problems such as machine learning, adaptive control and etc. The application of natural
computation for solving the TSPs is of significant value for related research on how to construct the
framework of evolutionary algorithms and to introduce effective evolution operations.

822

Acknowledgements

This work was supported by the the National Natural Science Foundation of China under grant No.
71561013;the Natural Science Foundation of Jiangxi
Province under grant No. 20151BAB207040; and the Subject of Teaching Reform in Universities
of Jiangxi Provincial Education Department under grant No. JXJG-14-10-9.

References

[1] C.Z. Fan.The research of evolution algorithm for TSPs. A dissertaion submitted to Hunan
normal university for the degree of master,2007.

[2] K.Q.Liu,L.S.Kang,Z.Z.Zhou.The research brief (I)On the branches of cognitive evolution
computing.computer science, Vol.36(7):26-31,July,2009.

[3] S.Q.Liu,K.Y.Yang.the Research on Improved Genetic Algorithm for solving TSPs.Journal of
Beijing university of information technology(natural science
edition),Vol.29(2):46-50,Apr,2014.

[4] A.Gong,M.Zhang. A TSP method for Hopfield network based on Clustering Technology.
Computer simulation, Vol.23(08):174-176,Aug,2006.

[5] Z.P.Yang,Y.L.Huang,L.G.Qu,P.P.Ge. The research of improved ant colony algorithm for TSP
and its simulation. Vol.37(08):928-932,Aug,2014.

823

