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Abstract. Traveling Salesman Problems is a classical kind of combined optimization problems. 
Solving TSP effectively can produce very important theoretical value in computable theory, and 
also has very high applied value in practice. Solving travel salesman problems by using some 
traditional algorithms is limited, The article discuss several natural computation methods of solving 
travel salesman problems, including solution of genetic algorithm, solution of continuous Hopfield 
algorithm and solution of Ant colony optimization algorithm.  

Introduction   

The travelling salesman problems (TSPs for short) asks the following question: Given a list of cities 
and the distances between each pair of cities, how can a salesman travel along the shortest possible 
route that visits each city exactly once and returns to the origin city? The TSP can be formulated as 
the Hamiltonian circuit problem in graph theory which can be described mathematically as: Assume 
D= ( ijd ) is the distance matrix of a graph, where ijd stores the distance between vertex i and vertex j 
contained in the graph, then TSPs seeks for the shortest cycle that visits each vertex exactly once. 
The TSPs can be applied to traffic managing, network routing, chip designing and etc., which makes 
solving it of practical value. Traditional approaches, such as exhaustive search, greedy algorithm, 
dynamic programming and etc., are all faced with the same problem: with the increase of N (the 
number of listed cities), the search space of the TSPs grow exponentially, yielding massive amount 
of computation and intolerable running time[1]. Natural computation algorithms are based on 
adopting some natural principles ，guide and  optimize the solution space searching. Natural  
computation algorithms have characters such as high parallelism, self-organization, self-adaptation, 
self-learning and etc., which make them viable to solve highly complex non-linear problems that 
traditional solvers can’t conquer[2]. Three typical natural computation algorithms are applied to 
solving TSPs in this paper. 

Genetic algorithm for solving TSPs 

Genetic algorithm, inspired by Darwin’s evolutionary theory, searches solution space effectively for 
the best solution that satisfies predefined stopping criterion(commonly, the algorithm terminates 
when either a maximum number of generations has been produced, or a satisfactory fitness level has 
been reached for the population) by generating child generation populations through genetic 
operations like crossover and mutation. Genetic algorithm, inspired by Darwin’s evolutionary 
theory, searches solution space effectively for the best solution that satisfies predefined stopping 
criterion(commonly, the algorithm terminates when either a maximum number of generations has 
been produced, or a satisfactory fitness level has been reached for the population) by generating 
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child generation populations through genetic operations like crossover and mutation[3].First of all, 
we need a encoding scheme to let chromosomes represent permutations of all cities in play. Let’s 
suppose that n cities are to be visited, then a possible route can be represented by a integer vector of 
size n: 1 2, , , ni i iK , where mi (1≤m≤n)stands for the existence of city m in the route and the vector 
holds a full permutation of the integer numbers ranging from 1 to n, that is, each number within the 
range appears exactly once in the vector’s elements. Detailed steps of the genetic algorithm for 
solving the TSPs are as follows: 

(1)Initialize P(0), the initial population, with a population size of  N and let t=0; 
(2) Select u parents from P(t), the t-th generation population, randomly; 
(3) Generate u children of bred by the u parents selected in Step (2) through the genetic operator 

of crossover; 
(4) Select two individuals from P(t) randomly. Replace one of them with the fittest child 

generated in Step (3) and, after applying the genetic operator of mutation on the rest u-1 children, 
replace the other one with the fittest individual of the u-1 mutated children; 

(5)Repeat Step (2) to Step (4) until all individuals in P(t) are replaced with N newly generated 
individuals. 

(6)If  t<T (the maximum number of generations), then t=t+1 and go to Step (2); If not, regard the 
fittest individual in the current population as the best solution. 

Continuous hopfield network for solving TSPs 

In essence, the TSPs is a combinatorial optimization problem which aims at finding an optimal 
object from a finite set of objects. For general combinatorial optimization problem, 
let {F x D= ∈ ∣ ( ) 0}g x ≥ denote the feasible region, where D is a finite set composed of  limited 
decision variables, x F∈ denote x  being a candidate solution, :f D R→ denote the objective 
function, then the candidate solution *x is said to be an optimal solution for the combinatorial 
optimization problem ( , , )D F f if there exists *( ) min{ ( )f x f x= ∣ }x F∈ . ( , , )D F f  here denotes 

min ( ),f x  ( . .s t  ( ) 0,g x ≥  .x D∈ ）For a combinatorial optimization problem like TSPs, hopfiled 
network can transform the objective function into the energy function of the network, mapping 
solutions to the problem onto states of the network[4]. An optimal solution for the problem is 
obtained when the network eventually converge to a state that is a local minimum in the energy 
function. The detailed procedures of using a Hopfield network to solve the TSP are as follows: 

(1) Map states of the neural network onto solutions to the TSP. Construct a neural network of size 
n×n, where the state of a neuron represents where a certain city appears in a certain possible route. 
To be more exact, let Vxi denote the state of neuron xi, where x(x∈{1,2,…, n}) represents the 
appearance of Cx(the x-th city of all listed cities) in the route while i represents that Cx is the i-th city 
to be visited in the route; if Vxi=0, then Cx doesn’t appear at the i-th position in the route, which 
means other city occupies the i-th position. Hence it can be seen that matrix V of size n×n can well 
store the sequence of all listed cities to be visited which leads to a possible route for the TSPs. 

(2) Define the energy function of the neural network. The energy function is defined as: 

E=E1+E2+E3+E4 , where E1= 2 xi xj
x i j i

A v v
≠

∑ ∑ ∑ (A is a constant and A>0) and it is guaranteed that, 

when the number of 1s in each row of matrix V is not greater than 1(which implies that each city is 

visited exactly once), E1min=0; E2= 2 xi yi
i x y x

B v v
≠

∑ ∑ ∑ (B is constant and B>0) and it is guaranteed that, 

when the number of 1s in each row of matrix V is not greater than 1, E2min=0; E3= 2( )
2 xi

x i

C v n−∑ ∑ (C 

is constant and C>0) and it is guaranteed that, when the number of 1s in each row of matrix V is n, 
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E3min=0; E4= , 1 , 1( )
2 xy xi y i y i

x y x i

D d v v v+ −
≠

+∑ ∑ ∑ (D is constant and D>0) and the definition E4 contains 

distance information of valid paths. 
(3) With energy function determined, construct the neural network by backstepping. Compare our 

energy function with standardized energy function and we have the connection weight over the 
edge connecting neuron ix and neuron jy : 

, , 1 , 1(1 ) (1 ) ( )(1 )xi yj xy ij ij xy xy j j j j xyT A B C Ddδ δ δ δ δ δ δ+ −= − − − − − − + −  where ,ij xyδ δ was defined as 
1,
0,ij

i j
other

δ
=

= 


,Input bias xiI Cn= . 

(4) Setup and run the network. We will obtain an optimal solution when the network converges. 
Noting that the formula for calculating ,xi yjT is given above, we have the running equation of the 
network as follows: 

, 1 , 1

( )

( )

xi xi
xi xj yi xi

j i y x x ixi

xy y i y i
y x

dU UC A v B v C v n
dt R

D d v v
≠ ≠

+ −
≠

= − − − − −∑ ∑ ∑ ∑

− +∑
  

Let ( )xi xtv g u= , assign proper value to (A, B, C, D) and 0U (which is the initial value), and run the 
step iteratively until convergence occurs. In the TSPs, xiv is supposed to be either 0 or 1, but due to 
the continuity of hopfield network, xiv changes continuously within [0,1] in practice. In the 
revolution process, a minority of neurons output value in an increasing manner while the rest does 
otherwise. 

Ant colony optimization algorithm for solving TSPs 

The ant colony optimization algorithm learns from the foraging behavior of ants, searching for the 
global best solution heuristically under the guidance of pheromone until convergence occurs[5]. 
Research shows: ants are always able to find the best path between their colony and food source, 
because the more ants go along a certain path, the more pheromone is laid on the path, resulting in a 
better chance of other ants travelling along the path and reinforce it, which eventually leads to the 
convergence of all ants picking the best path. Based on the foraging process of ants, procedure of the 
algorithm is demonstrated simply as follows: Place m ants randomly at n listed cities. For the first 
round of visit, each ant decides which neighboring city to visit next according a strategy of roulette 
gaming and visits the selected city. Each ant goes on its journey until all cities are visited. Move the 
initial starting city for each ant to the tail of its visit sequence. Thus far, the first round of visit is over 
and update pheromone laid on visited paths. Repeat visiting for rounds until the maximum times of 
iteration is reached or there exist two solutions that are extremely close to each other. 

Assume that there are n cities and m ants in play. Let dij=(i,j=1,2,... ,n) denote the distance 
between city i and city j, ( )ij tτ  denote the intensity of pheromone left on the path between city i and 
city j. Each ant’s decision of which neighboring city to visit next is based on the intensity of 
pheromone on optional paths，Letting ( )k

ijP t represent the probability of ant k moving from city i to 

city j, we have: Letting ( )k
ijP t represent the probability of ant k moving from city i to city j, we have: 

( )

[ ( )] [ ( )]
[ ( )] [ ( )]( )

0
k

ij ij

k
is ijij s J i

t t
t tP t

α β

α β

τ η

τ η
∈


 ∑= 



  ,   j ( )kJ i∈              … ①  
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where k(i)= {1,2,... ,n}-tabuk is the set of cites ant k can go to in the next step . The set tabuk is the 
tabu list of ant k which records all the cities that have been visited by the ant k so far. Ant k is said to 
finish a round tour, the path of which is a candidate solution to TSPs, if all of the n listed cities are 
contained in tabuk (which implies that ant k traversed all n cities) and ant k returns to the city where 
its trip started. ijη , called a heuristic factor or visibility, represents the level of expectation of ant k 
moving from city i to city j, usually taking the value of the reciprocal of dij. α and β respectively 
denote the relative importance of pheromone and that of heuristic factors. Pheromone on each path 
is globally updated according to Equation ② below after all ants finished its round trip. 

( 1) (1 )* ( )ij ij ijt tτ ρ τ τ+ = − + ∆         …② 

1

m k
ij ij

k
τ τ

=
∆ = ∆∑                                  … ③ 

where (0ρ ＜ ρ ＜1 ) denotes the volatility coefficient of pheromone; 1- ρ is the durability 
coefficient of pheromone; ijτ∆ represents the total increment of pheromone on the path between city 

i and city j in this round of iteration; k
ijτ∆ denotes the pheromone amount left by ant k on the path 

between city i and city j in this round of iteration(if ant k didn’t travel along path(i, j), then k
ijτ∆ is 0). 

The detailed steps of ant colony optimization algorithm for solving the TSPs are as follows: 

(1)Initialize parameters. Let t=0(clock time), ncout=0(counter of iteration), and make assignment 
to maximum times of iteration ncoutmax. Place m ants randomly at n cities. Let initial amount of 
pheromone on each path ijτ (t)=const, where const is a constant, and ijτ∆ (0)=0；. 

(2)Make assignment to counter of iteration: ncout←ncout +l ; 
(3)index=1； 
(4) Make assignment to the index of the ant in play: k←k+1; 
(5) Ant k makes its decision of which neighboring city to visit next, say city j(j ∈{C-tabuk}), 

according to probabilities shaped by Formula ①; 
(6) Move ant k to city j and add city j into tabuk, tabu list for ant k; 
(7)If k<m, which means not all cities are visited in this round of visit, go to step (4). Otherwise go 

to step (8). 
(8)Update pheromone on each visited path according to Formula ② and Formula ③. 
(9)If stopping rule, such as ncout≥ncoutmax , has been reached, then stop and output the path 

picked by the majority of ants. Otherwise empty tabu lists go to step (2). 

Conclusions    

Natural computation algorithms are different from traditional ones in many aspects, intelligence and 
essential parallelism in particular. Intelligence includes self-organization, self-adaptation, 
self-learning and etc. The essential parallelism lies in two aspects: One is inherent parallelism, that 
is, the nature of natural computation itself fits the requirement of massive parallel processing; The 
other is implicit parallelisms, which means that natural computation algorithms search for the best 
solution in a population using a iterative progress guided by information exchange. So its 
algorithms can process searching in approximate 3( )O N times with computing operations 
proportional to N(the population size), which makes them good solvers for intelligent optimization 
problems such as machine learning, adaptive control and etc. The application of natural 
computation for solving the TSPs is of significant value for related research on how to construct the 
framework of evolutionary algorithms and to introduce effective evolution operations. 
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