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Abstract. We study the regional mutual information to build a powerful and effective no-reference 
(NR) image quality assessment (IQA) approach. This approach does not need to compute 
distortion-specific features, but use the features which can distinguish the distortion in images across 
the distortion types. Such features are extracted from the image regional mutual information, which 
includes modified regional mutual information and a novel way to describe such information via 
wavelet transform. Operating within the 2-step framework, these features are tested on the LIVE 
database and show a nice correlation with human subjective opinions of image quality. 

Introduction 
Nowadays, the photographs play a more and more important role in human social and daily life. For 

instance, Google takes billions of digital photographs to build its image search and that image search 
engine bring Google lots of application amount. In recent years, the massive sums of the digital images 
stay with the public and provide them the visual information. But the visual information maybe lost 
caused by image distortions, how to quantize the image distortion and visual information contained in 
image draw attention to the researchers. 

Image quality assessment is the basic technology in image processing field. It can be classified into 
three approaches: Full-reference (FR), reduced-reference (RR) and no-reference (NR). Different 
approaches need different numbers of information from reference images. NR approach does not need 
the reference information, and this makes it to be a special concern. Recently, Saad et al. proposed 
holistic NR IQA algorithms referred to as BLIINDS-I and BLIINDS-II [1], [2]. Those algorithms 
extract the NSS features via a generalized Gaussian distribution (GGD) fit in the DCT domain of 
images using frequency coefficients.  Moorthy et al. introduced the idea of a 2-stage framework for NR 
IQA, using NSS features of wavelet domain [3], [4]. Gao et al. using the heterogeneous property of 
multiple kernel learning with the NSS features to estimate image's quality [5]. Mittal et al. [6] utilized 
the normal and asymmetric generalized Gaussian distribution (AGGD) to fit the NSS features in 
luminance coefficients of the image and using SVM machine learning to build the mapping between 
features and image quality. But those algorithms do not consider the mutual information between the 
distorted image and itself, which is correlative with the image distortion. Here, we study the regional 
mutual information to build an effective and efficient no-reference image quality assessment approach. 

The rest of the paper is organized as follows. In Sections II and III, we describe how to extract 
image features and predict image quality via those features and machine learning. We show the result of 
our algorithm in Section V and conclude the paper in Section VI. 

The Proposed Method 

Segmentation of image patches:Due to the theory that the image distortions do mainly affect the 
image quality in several image patches at the visual sensitive and insensitive places [7], the first step in 
our proceed is to divide the image in to patches whose size is N×N. Those image patches cover the 
whole image but overlap adjacent others since the size of those patches are constant, but we do our 
best to make those overlap as small as possible. 
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Given the collection of those patches, we just calculate a set of the regional mutual information 
(RMI) [8] coefficients of each patches. Furthermore, we consider the averaged RMI coefficients from 
each patch as the integral image RMI coefficients and the final image features. 

Regional mutual information features: Having found many disadvantage exist in the previous 
mutual information, such as ignorance of spatial information of image, many researchers dedicate to 
develop a more robust mutual information calculation which is not based on the error assumption that 
the pixel and its neighboring pixels are independent [9]. One of the most effective approaches is the 
regional mutual information (RMI) [8]. In this paper, we utilize RMI method to measure the image 
distortion rate. Furthermore, to obtain RMI coefficients of the images more roundly, we calculate it 
from different factors, such as the size of the window, the step distance of the moving window and the 
orientation information. The details are listed as follows. 

First, for each image patch extracting above, we calculated their RMI values. Here, instead of 
combining the reference image I0 and distortion image I in [9], we utilize the image intensity to 
estimate the matrix p 

                                                                      (1) 

where r is the window size, and the o represents the motion orientation of the window, which 
includes the horizontal and vertical. 

   Second, we calculate the matrix C using p and the RMI is defined as follow:                                                               
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while the CB is the bottom right one of the C with the same size while the value d between 1 and r. 

At last, we totally calculate 12 sets of RMI value via different orientation o and window size r. We 
also show one set of RMI in Fig. 1, and find that it is formed as considerable shock and multimodality. 
Therefore, it is unwise to fit it via any given function, such as Gaussian function, so we decide to utilize 
the mean value and the variance to describe the RMI values. 

              Fig. 1. Comparison of RMI cofficients across several distortions.         Fig. 2.  Low-frequency information and high-frequency information of RMI 

In order to obtain the mean value and the variance more accurately, we decompose the set of RMI 
values via wavelet transform to high-frequency and low-frequency information, respectively. The 
features contained the mean values of the low-frequency information and the variance from the 
high-frequency information (see Fig. 2). 

The multiscale characteristic is the nature of the images, and the image distortions also affect the 
image quality via several scales. Furthermore, the multiscale characteristic has been utilized widely in 
image quality assessment application [10] [11], which can enhance the performance of those algorithms 
correlating with human perception. In this paper, we totally extract 48-dimension features which are 
constituted by 12-dimension features in two scales and two orientations. 
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Learning image quality evaluation 
To map extracted features to the image quality, we utilized the SVR model under the 2-step 

framework to evaluate the image quality. The 2-step framework has been wildly used in image quality 
assessment. The first step in this framework is that classify the image into specific distortion types and 
get the probabilities P

→

, with which the image distortion type belongs to those specific types, using the 
SVM model trained by overall image. Then, assess the predicted image qualities Q

→

 in those specific 
distortion types utilizing the five SVR model trained by the image from each distortion type.  At last, 
combine the probabilities P

→

 and the image qualities Q
→

 to get the final image quality Qf. 
                                                                            (4) 

Experiments and results 
The LIVE IQA database [12] is considered as the test database in our approach. In this database, 

there are 29 reference images and 779 corresponding distorted images which contain several types of 
image distortion, including white Gaussian noise, Gaussian blur, JPEG compression, JPEG2000 
compression, and the Rayleigh fading channel which we usually called it fast fading distortion. 
Furthermore, the associated human differential mean opinion scores (DMOS) of each image, which 
represent the perceived quality of the image. 

Considering feature learning, we divide the overall database into training set and testing set, using 
the training set to train the classification and regression models in 2-step framework and the testing set 
to testify the effectiveness of our approach. We randomly set the training set and testing set as the 80% 
of the reference image and associated distorted versions and 20% of the reference image and associated 
distorted versions, which were absolutely separated by content. Furthermore, we test our approach in 
the test measure described above across 1000 times, and the median performance evaluation indices 
across the 1000 iterations were used as the final algorithm performance evaluation. 

The final indices for the performance of our approach are the Spearman’s Rank Ordered Correlation 
Coefficient (SROCC), the linear correlation coefficient (LCC) and the Root Mean Squared Error 
(RMSE). Those indices are calculated using the predicted DMOS out from our approach and the real 
DMOS in database. It means the performance is better that the value of SROCC and LCC are more 
closed to 1 while RMSE value closes to 0. 
Performance on LIVE Database 

Indicated by the indices SROCC, LCC and RMSE, the performance of our approach and other IQA 
approaches, including three full-reference approaches (PSNR, SSIM [13], [11] and VIF [14]) and four 
other holistic no-reference approaches (BIQI [4], DIIVINE [3], BLIINDS-II [1] and BRISQUE [6]), 
have been compared and listed in Tables I, II and III. With a similar random 20% testing set selection 
1000 times, those FR and NR algorithms are considered as the same. We also recall all the performance 
indicators from 1000 trials and then a box plot of the SROCC distribution for each algorithm is shown 
in Fig.3. We can find from the results that our approach has a well correlation with the DMOS of test 
images, and its performance is highly competitive with other NR methods. 

 
Table 1. Median SROCC across 1000 train-test trials on LIVE IQA database 

 JP2K JPEG NOISE BLUR FF ALL 
PSNR 0.8990 0.8484 0.9835 0.8076 0.8986 0.8293 
SSIM 0.9510 0.9173 0.9697 0.9513 0.9555 0.8996 
VIF 0.9515 0.9104 0.9844 0.9722 0.9631 0.9521 
BIQI 0.8551 0.7767 0.9764 0.9258 0.7695 0.7599 
DIIVINE 0.9352 0.8921 0.9828 0.9551 0.9096 0.9174 
BLIINDS-II 0.9462 0.9350 0.9634 0.9336 0.8992 0.9331 
BRISQUE 0.9442 0.9213 0.9891 0.9534 0.9042 0.9429 
Ours 0.9316 0.9550 0.9734 0.9617 0.8871 0.9423 

fQ Q P= ×
r r

826



 

Table 2. Median LCC across 1000train-test trials on the LIVE database 
 JP2K JPEG NOISE BLUR FF ALL 

PSNR 0.8837 0.8515 0.9817 0.8006 0.8939 0.8081 
SSIM 0.9601 0.9485 0.9861 0.9537 0.9616 0.9100 
VIF 0.9664 0.9478 0.9924 0.9774 0.9698 0.9520 
BIQI 0.8414 0.7603 0.9732 0.9118 0.7342 0.7422 
DIIVINE 0.9409 0.9097 0.9744 0.9393 0.9128 0.9116 
BLIINDS-II 0.9493 0.9505 0.9614 0.9375 0.9079 0.9241 
BRISQUE 0.9499 0.9280 0.9887 0.9497 0.9176 0.9330 
Ours 0.9611 0.9722 0.9780 0.9626 0.9070 0.9508 

 
Table 3.Median RMSE across 1000train-test trials on LIVE database 

 JP2K JPEG NOISE BLUR FF ALL 
PSNR 7.5641 8.3269 3.0741 9.4289 7.3990 9.4973 
SSIM 4.5389 5.0771 2.6584 4.6823 4.4855 6.6355 
VIF 4.1943 5.0856 1.9608 3.3315 3.9624 4.9180 
BIQI 13.787 17.013 5.3804 9.6562 15.551 15.954 
DIIVINE 8.5703 10.607 5.2137 8.0663 9.6520 9.9347 
BLIINDS-II 8.1730 7.7658 6.5009 8.0696 9.7141 9.0473 
BRISQUE 8.0293 9.3685 3.4819 7.4852 9.2958 8.7074 
Ours 7.9862 8.2415 6.8919 6.4349 12.946 9.7058 

 
 Fig. 3. Box plot of SROCC distributions of IQA models across 1000 train-test trials on the LIVE 

IQA database. 

Classification Analysis 
Due to the first step that classified the test image into different distortion types in 2-step framework, 

we also show the classification performance of our approach in Table IV. Similarly, we compare the 
classification using testing and training set across all distortion categories over the 1000 trials, and 
utilize the medians of the classification accuracies as final indices. There the hard classification is not 
applied in the 2-stage framework used in our approach but a weighted probability estimate. 

Conclusion 
In this paper, we presented a new NR IQA approach which uses a novel way to evaluate the distorted 

image quality disregarding the distortion types. The major contributions in our research are described 
as three points. First, we expand the application of RMI into the NR image quality assessment, which 
has been proved that it has a nice performance in FR image quality assessment [6]. Second, the images 
are segmented into image patches in order to catch the image distortion more effectively. Finally, we 
build an effective way to describe the irregular distribution, using the wavelet decompose the high- and 
low- frequency and calculating the mean and variance values as the element for description. 

In the future, we will make further efforts to improve this approach, such as expending it into 
NR-IQA model without feature learning procedure. 
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