
 

A Hybrid Genetic Algorithm for the Distributed Permutation Flowshop 
Scheduling Problem 

Yan Li1, a*, Zhigang Chen2, b 

1Department of Industrial Engineering, Shanghai Second Polytechnic University, Shanghai, 201209, 
China 

2Department of Logistics, Shanghai Second Polytechnic University, Shanghai, 201209, China 
aemail: liyan@sspu.edu.cn, bemail: zgchen@sspu.edu.cn 

Keywords: Distributed permutation flowshop scheduling; Genetic algorithms; Local search; 
Hybrid genetic algorithm. 
Abstract. For solving the distributed permutation flowshop scheduling problem (DPFSP) with the 
objective of minimizing makespan we design a hybrid genetic algorithm. This algorithm combines a 
simple genetic algorithm, a local search algorithm and a plant allocation rule with the aim of 
minimizing the makespan. The experimental results show that the proposed algorithm outperforms 
the genetic algorithm in terms of efficiency and effectiveness for parts of the data. 

Introduction 
The distributed permutation flowshop problem was recently proposed by Naderi and Ruiz [1]as a 

generalization of the regular flowshop setting where more than one plant is available to process jobs. 
The problem has two dimensions: assigning jobs to factories and scheduling the jobs assigned to 
each factory.  

The first heuristics to solve the DPFSP was proposed by Naderi and Ruiz [1]. They suggested 
four constructive heuristics, denoted NEH1, NEH2, VND(a) and VND(b), following the ideas taken 
from the PFSP and employing Taillard’s acceleration. Using NEH2 and VND(a) as initial solutions, 
Gao and Chen [2] were the first authors who proposed an iterated optimization algorithm for the 
problem. Their proposal was later outperformed by the tabu search algorithm (TS) by Gao, Chen, 
and Deng [3]. Wang et al. [4] implemented an Estimation of Distribution Algorithm (EDA. Lin, 
Ying, and Huang [5] proposed for the problem a variation of the iterated greedy, denoted MIG.  

This paper presents a hybrid genetic algorithm (GA) method for this problem to optimize 
makespan. We employ some standard techniques like one point crossover and mutation combined 
with a local search and a plant assignment rule. Computational experiments show that the proposed 
algorithm produces improve results than original answers. 

Problem description 
The problem under consideration can be stated as follows: n jobs have to be scheduled in one of 

the F flowshop factories consisting of m machines. Each factory is identical with the same set of m 
machines and is able to process all jobs. Once a job is assigned to a factory, it has to be processed 
there without being transferred to another factory. On each machine i, each job j has a processing 
time denoted as regardless the factory f where the job is processed. The problem determines the 
sequence , formed by jobs, to be scheduled in each factory f. Therefore, a solution π is formed 
by the sequence in each factory ( ). Let  be the completion time of job j 
in machine i when assigned to factory f, and  the makespan of factory f. Then 

 denotes the global makespan. i.e. the completion time of the last job to be 
processed in any factory. Additionally,  is employed to denote the element of factory f in 
position i. By using  to denote the factory with maximum makespan, the global makespan can 
be also written as . 

 

International Conference on Information Technology and Management Innovation (ICITMI 2015) 

© 2015. The authors - Published by Atlantis Press 843



 

Step 1. Create initial population randomly. 
Step 2. Stopping criteria = false? If no go to step 8; otherwise 
continue. 
Step 3. Select survivor genes 
Step 4. Crossover 
Step 5. Mutation 
Step 6. Local search 
Step 7. Plant assignment 
Step 7. Evaluate fitness 
Step 8. Stop HGA 
 

Propose hybrid genetic algorithm approach 
The proposed algorithm can be summarized as Fig.1 follows. 

Fig.1 Overall Hybrid GA framework  

position:  job  IDs 
1 2 3 4 5 
2 1 3 5 4 
λ: priority values 

 
Fig.2 Priority value based 

encoding 

Encoding scheme. An individual is represented by a vector λ of priority values. Each priority 
value in the vector λ is linked to a job and based on these values, the sequence in which the jobs and 
activities will be scheduled is assigned.  

Initial population. The initial population consists of N randomly generated job sequences. N is 
referred to as the population size. 

Reproduction. Individual chromosomes from the present population are copied according to 
their fitness values. This is done by randomly selecting (with replacement) chromosomes with 
probability proportional to their fitness value. Roughly speaking, one would expect N ×  number 
of copies of string i in the gene pool used to create the next generation. This forms the mating pool 
to which the crossover and mutation operators are applied to form the next generation. 

Crossover. Two parents are selected from the mating pool at random. With probability  
the parents are copied as they are. With probability  called the crossover probability the 
following operation is performed: In case of a standard GA a single point crossover (called 1X 
operator) between two parents is carried out by choosing a number k at random between 1 and l − 1, 
where l is the length of the string (l >1). Two new strings are created by swapping all characters 
from position k +1 to l. However, doing so for the above coding scheme could result in infeasible 
strings. Hence a modification has to be carried out in the standard crossover procedure. To do this 
the first child is created by copying all characters of the chromosome of the first parent to location k. 
The remaining places are filled by scanning parent 2 from left to right and entering the priority 
values not already present. Child 2 is created in a similar way by reversing the roles of the parents. 
The above procedure is repeated till N children are obtained. 

Mutation. Mutation is done by selecting two different locations on the chromosome at random 
and interchanging the priority values at these locations. For each child obtained from crossover, the 
mutation operator is applied independently with a small probability . 

Plant assignment. Naderi and Ruiz [1] tested several possible rules, from simple to complicated 
ones, and the NEH2 rule is the best: Assign job j to the factory which completes it at the earliest 
time, i.e., the factory with the lowest Cmax, after including job j. We adopt NEH2 to allocate jobs to 
factories.  

Termination criterion. We terminate the GA after 30 generations. 
 
 
 
 
 
 
 
 
 
 
 

844



 

Local search. The local search procedure can be written as follows: 

 
Fig.3 Local Search-Based Mutation 

Fitness evaluation function. The fitness evaluation function assigns to each member of the 
population a value reflecting their relative superiority (or inferiority). Let   denote 
the reciprocal of the makespan of the strings in the population. The fitness value assigned to string i 
would then be proportional to .  

Computational experiments 
The proposed algorithm is implemented in C++ on a PC of Intel Core i3 with 3.30 GHz and 4.00 

GB RAM. We use a set of standard test problems available in the web page for the research group 
"Sistem as de Optimización Aplicada SOA" or Applied Optimization Systems 
(http://soa.iti.es/problem-instances).  

In the scheduling area, and more specifically, in the PFSP literature, it is very common to use the 
benchmark of Taillard [6] that is composed of 12 combinations of : {(20, 50, 100)  (5, 10, 
20)}, {200  (10, 20)} and (500 20). Each combination is composed of 10 different replicates so 
there are 120 instances in total. [1] augment these 120 instances with seven values of F = {2, 3, 4, 5, 
6, 7}. This results in a total of 720 large instances. All instances, along with the best known 
solutions are available at http://soa.iti.es.  

We employ the improvement rate 1 (IR1), improvement rate 2 (IR2) , and Gap to describe the 
effectiveness and efficiency of the proposed hybrid GA. The original makespan is the first of five of 
the best values of makespan by GA. The GA makespan is the final of five of the best values, the 
best one of GA. The LS makespan is the proposed local search results. The Best know makespan is 
from http://soa.iti.es/problem-instances. 

 
 

 
 

 
 

 
 

Table 1 and Fig. 1 summarize the results of the computational experiments. The improvement 
Rate I shows that the GA can improve original solution by 1.38-2.63%. The improvement rate II 
and frequency of improvement rate II shows that the LS algorithm is effective to data with plant 
number 2 to 5, but not to data with plant number 6 and 7. The average gap shows the efficiency and 
effectiveness of the proposed hybrid GA. Although the total average gap indicates that the proposed 
hybrid GA is not powerful enough to improve the currently best known solutions, we hope to 
design a more powerful one based on the proposed hybrid GA to improve efficiency in the near 
future. 

Conclusions 
We propose a hybrid genetic algorithm to solve the distributed permutation flowshop scheduling 

Step 1. Specify a seed solution s. 
 Step 2. Generate a neighborhood set N. This is obtained from s by interchanging 

all adjacent pairs of jobs. 
 Step 3. Select a schedule n in the neighborhood set N generated by the seed 

solution s, and compute its fitness value. 
 Step 4. If all neighborhood solutions of s have been already examined, check the 

neighborhood solution with the minimum fitness value and improvement ratio. If there 
is no neighborhood solution that improves the overall solution, terminate this 
procedure. Otherwise, replace the seed solution with the neighborhood solution with 
the minimum fitness value and return to Step 3. 
 

845



 

problem. In the proposed algorithm we combine a simple genetic algorithm, a local search 
algorithm and NEH2 to sequencing and assigning jobs to plants. Computational experiments show 
that the proposed algorithm can improve results than original ones but not powerful enough to 
produce better ones than the known best solutions. For further research, we will redesign the 
standard GA implementation by using structural information from the problem. Combining GA 
with constraint programming and other heuristics to design hybrid search algorithms will also be a 
valuable direction. 

Table 1: Result summary  
Number of plants 2 3 4 5 6 7 
Average Improvement Rate I (%) 1.38 1.66 2.16 2.27 2.63 2.22 
Average Improvement Rate II (%) 0.06 0.15 0.18 0.15 0.00 0.00 
Frequency of Improvement Rate II (%) 11.67 21.67 20.00 18.33 0.00 0.00 
Average GAP (%) 17.72 19.68 20.79 21.93 22.78 23.99 

 
Fig.4. The experimental results 

Acknowledgements 
This work was financially supported by Innovation Program of Shanghai Municipal Education 

Commission （No. 13YS121） and Academic Development Program of Shanghai Second 
Polytechnic University (Management Science and Engineering, No. XXKPY1313). 

References 
[1]Naderi, B. and R. Ruiz, The distributed permutation flowshop scheduling problem. Computers & 
Operations Research, 2010. 37(4): p. 754-768. 

[2]Gao, J. and R. Chen, A hybrid genetic algorithm for the distributed permutation flowshop 
scheduling problem. International Journal of Computational Intelligence Systems, 2011. 4(4): p. 
497-508. 

[3]Gao, J., R. Chen, and W. Deng, An efficient tabu search algorithm for the distributed 
permutation flowshop scheduling problem. International Journal of Production Research, 2013. 
51(3): p. 641-651. 

[4]Wang, S.Y., et al., An effective estimation of distribution algorithm for solving the distributed 
permutation flow-shop scheduling problem. International Journal of Production Economics, 2013. 

846



 

145(1): p. 387-396. 

[5]Lin, S.W., K.C. Ying, and C.Y. Huang, Minimising makespan in distributed permutation 
flowshops using a modified iterated greedy algorithm. International Journal of Production Research, 
2013. 51(16): p. 5029-5038. 

[6]Taillard, E., Benchmarks for basic scheduling problems. European Journal of Operational 
Research, 1993. 64(2): p. 278-285. 

847




