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Abstract. A new type of activation function, named Li activation function, is used in gradient-based 
neural network (GNN) to solve Lyapunov matrix equation. With this activation function, theoretical 
analysis shows that GNN can converge in finite time, while it can converge only in infinite time with 
two conventional activation functions — linear and power-sigmoid. Computer simulation results 
confirm that GNN with Li activation function can not only globally converge to the solution of the 
Lyapunov matrix equation but also converge in finite time. GNN with the conventional two activation 
functions are also simulated as a contrast. 

Introduction 
The Lyapunov (or Lyapunov-like) matrix equations are widely used in many different engineering and 
scientific computing areas, such as linear algebra, control theory, boundary value problem, signal 
processing and optimization [1]. 

In recent years, due to the in-depth research in recurrent neural networks (RNN), a variety of 
computational methods based on neural solvers have been proposed to solve matrix equation. A 
quintessential example should be cited in [2], where by taking advantage of Lyapunov functional 
theory to ensure the asymptotic stability of uncertain fuzzy recurrent neural networks with Markovian 
jumping parameters a novel linear matrix inequality-based stability criterion was obtained. The Neural 
networks with distributed and/or time-varying delays have also been studied [3]. Subsequently, Zhang 
neural network (ZNN) was proposed to solve Sylvester matrix equation and matrix inversion with 
time-varying coefficient matrix [4, 5]. 

To construct a neural network, the first and foremost thing is to define a scalar-valued norm-based 
energy function. The minimum point (it is generally a global minimum) of the energy function 
corresponds to the solution of the original problem. Next one should minimize the energy function. The 
most common method is to find the negative gradient direction. Therefore, in [6], the gradient-based 
neural network (GNN) model was proposed for solving Lyapunov matrix equation. And the authors of 
[7] improved the GNN model by using different activation functions. However, the GNN model 
without activation function is equivalent to the improved GNN model with linear activation function. 
They also proved that the improved GNN model with power-sigmoid activation function has a superior 
convergence. But the improved GNN model with the suggested activation functions never converges 
to the accurate value in finite time. 

In this paper, the improved GNN model is presented with a new activation function suggested in [8], 
referred to Li activation function, for solving the Lyapunov matrix equation. The global convergence 
and finite-time convergence are proved in theory. The upper bound of the convergent time is also 
given. Computer simulation results demonstrate that, by using Li activation function, the GNN model 
can really converge in finite time. As a comparison, GNN models with power-sigmoid and linear 
activation function are also simulated. 
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Gradient-based Neural Network (GNN) Model 
Consider the Lyapunov matrix equation 

,T CXAXA −=+                                                                 (1) 

where A∈ Rn×n  is the coefficient matrix, and C∈ Rn×n  is positive definite. According to the traditional 
gradient-based algorithm, the first and foremost is to define an energy function ε(X) based on a 
nonnegative scalar-valued norm: 
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where ||·||F denotes the Frobenius matrix norm, i.e., ||A||F =, and trace(ATA) is the trace of ATA. Thus, it 
follows 
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With the basic differential properties of the trace of a product matrix PZQ: 
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where P, Z and Q are arbitrary matrices with appropriate order, the following can be obtained 
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By evolving along the negative gradient of such an energy function ε(X), the following classical GNN 
model is taken 

),)()(()( TTT ACXAXACXAXAAΓtX +++++−=&  
where Γ  is a positive definite matrix, and the time varying matrix X(t), starting from an initial condition 
X0 = X(0)∈ Rn×n, is the activated state matrix corresponding to the theoretical solution X*(t) of (1). 
Usually Γ is simply taken as γI with constant scalar γ > 0 and I is identity matrix. And γ should be set as 
large as the hardware permit and is generally used to scale the convergence rate [9]. 

In 2005, Zhang et al combined four kinds of activation functions with the ZNN model [5]. In [7], to 
solve the Lyapunov matrix equation the author added the four kinds of activation functions to the 
classical GNN model, where the author called the new GNN model the improved GNN model. Here is 
the improved GNN model, 
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where F(·)  is a function of matrix, defined as follows: 
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The following is the four kinds of activation functions: 
(i) linear activation function f (x) = x; 

(ii) bipolar sigmoid activation function f (x) = (1 - exp(- ξx))/(1 + exp(- ξx)) with ξ ≥ 2; 
(iii) power activation function f (x) = xp with odd integer p ≥ 3; 
(iv) power-sigmoid activation function 
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with suitable design parameters ξ ≥ 2 and p ≥ 3. 
In this paper, we will combine an activation function presented in 2013 [8] and referred to Li 

activation function to the GNN model (2). Both theoretical analysis and numerical simulation show 
that when using GNN model (2) with this type of activation function to solve the Lyapunov matrix 
equation, the state matrix X(t) can converge to the accurate solution in finite time. Here is the Li 
activation function, 
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where x∈R, r > 0 is a parameter. The function sigr(x) is defined as follows 
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For the Li activation function defined in (3) and (4), it's easy to see that for a positive constant ρ, the 
case r = ρ is always same to the case ρ

1=r . Then it is only needed to consider the Li activation function 
with 0 < r ≤ 1 or r ≥ 1. It can be seen that the Li activation function is reduced to the linear activation 
function when r = 1, and for |x|>>1 with r increasing, the Li activation function approaches )(sig2

1 x .  

Global Convergence and Finite-time Convergence 

It's easy to see that both sigr(x) and )(sig
1

xr  are monotonically increasing odd functions. Then it can be 

said that the Li activation function )(sig)(sig)(
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function, thus the following theorem holds. 
Theorem 3. If Theorem 2 is satisfied. X* is the unique solution of Lyapunov matrix equation (1). By 
using the GNN model (2) with Li activation function, the state matrix X(t) staring from any initial 
state X0 always converges to X*. 

The following theorem shows that by using the GNN model (2) with Li activation function the exact 
solution to the Lyapunov matrix equation can be obtained in finite time. 

Theorem 4. If Theorem 2 is satisfied. *X  is the unique solution of Lyapunov matrix equation (1). By 
using the GNN model (2) with Li activation function with 0<r<1, the state matrix X(t) could converge 

to the exact solution X* in finite time )1(2
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, where X0 is the initial state matrix, α  is the 

minimum eigenvalue of matrix TT AAM ⊕=  and n is the order of matrix A. 

Remark If r > 1, similarly, an upper bound of the convergence time can also be obtained. However, by 
the definition of Li activation function, 1≥r  and 10 << r  is the same. So it is only need to consider 0 
< r < 1 or r > 1. And in either case, the convergence time t has the same supremum which is smaller than 
the upper bound obtained in Theorem 4. 

Illustrative Example 
For illustration and comparison, consider Lyapunov matrix equation (1) with the following coefficients 
(which is the same as Example 4.9 in [9]) 
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Taking C as an identity matrix, if the routine X = lyap(AT,C) is used, the theoretical solution can be 
obtained: 
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By the global convergence (Theorem 3), the initial matrix X0 is randomly generated within [-2,2]3×3. 
As X* is a symmetric matrix, we only need to compute x11(t), x12(t), x13(t), x22(t), x23(t), x33(t). With Li 
activation function and taking r=3, γ=10, it can be seen that the neural network output X(t) reaches the 
exact solution X* in a period of time (approximately 6 seconds which should be close to the suprenum). 
And the upper bound is about 12.6 seconds by Theorem 4. This shows the finite-time convergence. 

The finite-time convergence of GNN model (2) with Li activation function is compared with the 
GNN model (2) with the linear and power-sigmoid functions, where r=3, p=3, ξ=4, and in all the three 
cases γ and X0 are all chosen as, γ=10, 
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and the error is defined as 
F

XtX *)( − . It can seen that the GNN model (2) with Li activation 

function can converge to the exact solution in about 6 seconds compared to the GNN model (2) with 
the linear and power-sigmoid activation functions which can converge to the exact solution only in 
infinite time. In contrast, the GNN model (2) with power-sigmoid and linear activation functions still 
have a relative large error at t = 6. It is also seen that at the end of the simulation the GNN model (2) 
with power-sigmoid and linear activation functions still can't return the true solution X*. 

Comparisons of the GNN model with the Li activation function and r = 2, r = 3, r = 4 and r = 5 show 
that when r > 1 a faster convergence rate can be obtained with r increasing. 

Conclusion 
In this paper, a new activation function, named Li activation function, is combined with the GNN 
model for solving Lyapunov matrix equation. Compared with traditional activation functions such as 
the linear and power-sigmoid activation functions, the GNN model with Li activation function can 
converge to the exact solution of Lyapunov matrix equation in finite time. Also, the global convergence 
and finite time convergence are analyzed and proved. The upper bound of the convergence time is also 
given. Numerical example illustrates the global convergence and finite time convergence. 
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