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Abstract. The problem of two-dimension coherent direction of arrival (DOA) for uniform planar array 
is investigated in this paper. The signals propagate over multipath channel, which thus leads to the 
coherent source. The traditional two-dimension direction of arrival (2D-DOA) estimation algorithm 
fails to work for the coherent source. In this paper, we will propose a coherent DOA estimation 
algorithm for uniform planar array, which uses the characteristic of Toeplitz matrix to restructure the 
covariance matrix, and use rotational invariance technique to realize the 2D-DOA estimation. The 
validity and performance of the algorithm can be verified by simulations in this paper. 

Introduction 
Direction-of-arrival (DOA) estimation is a fundamental problem in array signal processing and has 
been widely used in many fields, such as sonar, radar, wireless communication [1-3]. In recent years, 
with the rise of two-dimensional (2D) parameter estimation, the research and application of 2D-DOA 
estimation have won great attention in array signal processing [4-11]. This problem is usually 
considered with rectangular array, two parallel uniform linear array, and L-shape array, etc. Also, many 
algorithms have been applied to 2D-DOA estimation, which include 2D Multiple Signal Classification 
(MUSIC) algorithm [4], 2D Estimation of Signal Parameters via Rotational Invariance Technique 
(ESPRIT) algorithm [5-6], 2D Propagator Method (PM) algorithm [7-8], maximum likelihood method 
[9], Parallel Factor (PARAFAC) algorithm [10] and high order cumulant method [11], etc.  

However, under the influence of environment, the signal emitted by the source, will propagate 
through multipath, thus leading to the coherent signal sources. The traditional DOA estimation 
methods assume that the signals are independent statistically, but we should consider the rank loss of 
the covariance matrix of the coherent sources. If using the traditional method, we will directly obtain 
inaccurate or even error angles. Therefore, it is valuable to study the effective coherent signal 
processing algorithm. The focus of DOA estimation of coherent signals is how to restore the rank of 
the covariance matrix, which called decoherence, and then use the conventional method to estimate 
DOA. The pretreatment of decoherence can be divided into two categories: spatial smoothing 
algorithm [12] and time smoothing algorithm [13]. The essence of spatial smoothing algorithm is to 
recover matrix rank, but the dimension of the matrix is less than the revised dimension of the original 
matrix. That is to say, the spatial smoothing algorithm is used by reducing the degree of freedom. 

In this paper, a new algorithm of 2D-DOA estimation for the coherent sources is proposed in the 
uniform planar array. The algorithm reconstructs a special antenna array model based on the 
Toeplitz-like matrix whose rank is only related to the DOA of signals and cannot be affected by the 
coherency between them [14]. Furthermore, the ESPRIT algorithm will be used to estimate the 
2D-DOA. 

This paper consists of 5 sections: the first section is introduction; the second section analyzes the 
signal model; the third section proposes an ESPRIT algorithm via reconstructing Toeplitz-like matrix; 
the fourth section conducts simulation; and the last section is the conclusion. 

Notion: ( )T
• , ( )H

• , ( ) 1−
•  and ( )+

•  denote transpose, conjugate-transpose, inverse, 
pseudo-inverse operations, respectively. [ ]E • , F  and [ ]O   are expectation operator, Frobenius 
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norm and complexity, respectively. ( )diag v  stands for diagonal matrix whose diagonal element is a 
vector v. ( )angle •  is to get the phase angle. x̂  represents estimation of exact value x . ⊗ , o  and ⊕  
stand for the Kronecker product, Khatri-Rao product and Hadamard product, respectively. bold 
lowercase letters are vectors and bold capital letters are matrixes. 
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Fig.1 The structure of uniform planar array [1] 

Signal Model 

Fig.1 shows a uniform planar array which has (2 1) (2 1)M N+ × +  sensors, and the space between 
adjacent elements is d . Allowing for the far field signal with distant source, the signal arriving at the 
array can be considered as parallel wave. Suppose that the noise and signal are mutually independent 
and it is an addictive independently and identically distributed Gaussian process. Assume that there are 
K signal sources, where the first Q signals are mutually coherent and others are uncorrelated and 
independent of the first Q signals, and the elevation angle and azimuth angle of ith source are iθ  and iφ . 
The received signal of the ( , )m n  element can be expressed as 
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where ( )ks t  is the kth source, ( )mnn t  is the additive white Gaussian noise, and kβ  represents 
coherence coefficient. Then the received signal is given by 
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where [ ]1( ) ( ), , ( )Kt s t s t=s L  is the source vector, ( )0 1 TN N
x x x x y x

−  = =A AΨ AΨ AΨ AΨ A AL L o  is the 

direction matrix, 1 1 2 2[ ( ), ( ), , ( )]y y y y K Kθφ θ φ θ φ=A a a aL , 1 1 2 2[ ( ), ( ), , ( )]x x x x K Kθ φ θ φ θ φ=A a a aL , 
2 sin sin 2 sin sin 2 sin sin 2 sin sin, , , ,( ) [ , 1, ]k k k k k k k kj Nd j d j d j Nd T

ky k e e e eπ θ φ λ π θ φ λ π θ φ λ π θ φ λθ φ − −=a LL ,
2 sin cos 2 sin cos 2 sin cos 2 sin cos, , , ,( ) [ , 1, ]k k k k k k k kj Md j d j d j Md T

kx k e e e eπ θ φ λ π θ φ λ π θ φ λ π θ φ λθ φ − −=a LL , and 
1 21 22 sin sin 2 sin sin 2 sin sin,( , ..., )K Kj d j d j ddiag e e eπ θ φ λ π θ φ λ π θ φ λ− − −=Ψ . 

Therefore, the covariance matrix can be given as XX ( ) ( )HE t t =  R X X , and any element of the 
covariance matrix can be expressed as  
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, ( ) ( ) ( , 1, 1, , )l k l kP E s t s t l k Q K∗  = = + L  and 2σ  is noise power. 

An ESPRIT Algorithm via Reconstructing Toeplitz-like Matrix 
We can construct Toeplitz-like matrix 
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where r ry rx=A A Ao , 1 1 2 2[ ( ), ( ), , ( )]rx rx rx rx K Kθ φ θ φ θ φ=A a a aL , 1 1 2 2[ ( ), ( ), , ( )]ry ry ry ry K Kθ φ θ φ θ φ=A a a aL , 
2 sin cos 2 sin cos, ,( ) [1, ]k k k kj d j Md T

krx k e eπ θ φ λ π θ φ λθ φ − −=a L , 2 sin sin 2 sin sin, ,( ) [1, ]k k k kj d j Nd T
kry k e eπ θ φ λ π θ φ λθ φ − −=a L  and 

{ },,1 ,2( ) , , , mn Kmn mnmn diag d d d=D L . 
We can conduct eigen-value decomposition of ( )mnR , and get the signal subspace sE . Then 

there must be a unique, non-singular and full rank matrix K K×∈T  , which makes the Eq.(6) set up.  
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We partition sE  as 
  
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where s1E  and s2E  represent the last ( 1)M +  rows and the first ( 1)M +  rows of matrix sE  respectively, 

xE  and yE  are formed by the first ( 1)N M +  rows and the last ( 1)N M +  rows of sE .     
Then: 

−= 1
y xE E T TΨ                                                                                                                                     （8） 

That is 
+ −= 1
x yE E T TΨ                                                                                                                                          （9） 

therefore,  
ˆ ( ) / 2γ λ π= −ini

k ku angle d                                                                                                                                （10） 
where sin sink k ku φ θ=  and γ k  is the kth eigen-value of x y
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where { }1 1j2 cos sin / j2 cos sin /, , K Kd d
x diag e eπ φ θ λ π φ θ λ− −=Φ L  and 'T  is permutation matrix. Similar to the 

above process, we can get 
ˆ ˆ ˆcos sink k kv φ θ=                                                                                                                                      （12） 

After pairing, we may obtain k̂θ  and φ̂k  by the following formula 
2 2
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The major complexity of ESPRIT algorithm via reconstructing Toeplitz-like matrix to estimate 
DOA of coherent signal is [ ]{ }2 2 3 3 2 3(2 1) (2 1) ( 1) ( 1) 2 ( 1) ( 1) 6L M N M N K N N M KO M+ + + + + + + + + + . 

Simulation results 
Define the root mean squared error (RMSE) as  
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where T is simulation times, kmω  represents the estimation value of the kth source elevation (or 
azimuth) in the mth simulation, K is the number of coherent signal sources, and kω  is the accurate 
value of the kth source elevation (or azimuth). In the following simulations, we define K is the source 
number, L is the number of snapshots, and (2 1) (2 1)M N+ × +  is the number of array elements. To 
ensure the commonality, we set 3N = . 

0 5 10 15 20 25 30 35 40
0

5

10

15

20

25

30

35

40

45

50

Elevation/(°)

A
zi

m
ut

h/
(°)

 
Fig.2 Angle estimation performance of the proposed algorithm with SNR=30dB (L=100, M=3 

and K=3) 
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Fig.3 Angle estimation performance with different L (M=3 and K=3) 
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Fig.4 Angle estimation performance with different M (L=100 and K=3) 
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Fig.5 Angle estimation performance with different K (L=100 and M=3) 

 
Fig. 2 depicts angle estimation performance of the proposed algorithm in SNR=30dB, where M=3, 

elevations are (10°,20°,30°), and azimuths are (20°,30°,40°). From the figure we can see that this 
algorithm estimate the elevation and azimuth effectively. Fig. 3 presents the angle estimation 
performance with different snapshots. As the snapshots increase, the sample data augments so that the 
covariance matrix becomes more accurate and the DOA estimation performance improves. Fig.4 
presents the angle estimation performance with different numbers of array elements. From Fig.4, we 
can find that the DOA estimation performance is improved with the increase in the number of the 
elements. Fig. 5 investigates angle estimation performance with different signal source quantities. We 
see from the Fig. 5 that the DOA estimation performance decreases as the signal sources increase. 

Conclusions 
The paper has presented the problem of two-dimension coherent DOA estimation for uniform planar 
array, and proposed the 2D coherent DOA via Toeplitz matrix and ESPRIT algorithm.  The proposed 
algorithm reconstructs the Toeplitz matrix to eliminate the coherence, and use ESPRIT algorithm for 
2D-DOA estimation. The proposed algorithm can obtain automatically paired 2D-DOA estimate, and it 
has a low computational complexity.  
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