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Abstract. This study first proposes a concept of generalized stability (GST) for discrete chaos system, 
which is the generalization of chaos generalized synchronization (CGS). Then this study sets up a 
constructive theorem of GST for discrete chaos system, which provides a general representation of 
GST in discrete chaos system. Using the theorem designs an 8-dimensional GST system consisting of a 
driving chaotic system and a driven chaotic system. Numerical simulation verifies the chaotic dynamic 
behaviors of such GST system, which is used to design a chaotic pseudorandom number generator 
(CPRNG). Using FIPS 140-2 test suite and G FIPS 140-2 test suite test the randomness of four 
1,000-key streams consisting of 20,000 bits generated respectively by the CPRNG, the RC4 algorithm 
and the ZUC algorithm. The results show that the randomness performances of the CPRNG is 
promising, and suggest that the statistical properties of the randomness of the sequences generated via 
the  CPRNG and the two algorithms do not have significant differences. As an application, using the 
sequences generated via the CPRNG and a stream encryption scheme with avalanche effect (SESAE) 
encrypts an RGB image. The results show that the encrypted RGB image have significant avalanche 
effects, and suggest the CPRNG is a qualified candidate for the stream encryption scheme with 
avalanche effect. 

Introduction 
Chaos is one type of complex dynamic behaviors and generated from determined nonlinear discrete or 
continuous systems. Chaotic dynamics are highly sensitive to the initial conditions and the parameters 
of the chaos systems. Chaotic behaviors are unpredictable for long terms ([1, 2]). 

Chaos synchronization (CS) have been one of the major issues in many physical, biological and 
technological fields. Since the seminar paper of Pecora and Carroll [3] on chaos synchronization 
communications, the research on chaos synchronization-based communications has been attracted 
much attention ([4-9]). As a generalization, chaos generalized synchronization (CGS) means that the 
trajectories of two different systems trend to each other with respect to a transformation starting from 
different initial conditions in a specific domain. The study of generalized synchronization has also got 
extensive attention ([5-15]). Chaos generalized synchronization may provide some new tools for 
cryptography and communications ([16-21]). 

Pseudorandom number sequences are useful in many fields such as simulations of physical systems 
and computer simulation, particularly cryptography ([22, 23]). Today algorithmic pseudorandom 
number generators (PRNGs) have replaced almost all random number tables and hardware random 
number generators in practical applications ([24-26]). 

The main aims of this paper are to extend the concept of the generalized synchronization to 
generalized stability (GST) for discrete chaos system, and set up the corresponding GST theorem. 
Based on the GST theorem, this study introduces a novel chaotic discrete map, constructs a chaotic 
pseudorandom number generator (CPRNG) with a large key space and sound pseudo randomness. The 
FIPS 140-2 test suite and G FIPS 140-2 test suite [27] are used to test the randomness of the CPRNG, 
the RC4 algorithm and the ZUC algorithm [28], respectively. As an application, using the CPRNG and 
the stream encryption scheme with avalanche effect (SESAE) encrypts a RGB image. 
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Definition and Theorem on GST 
A point of view states that two events with  relationship of cause and effect might be described via 

two generalized synchronization systems. Motivated by CGS, we introduce the concept of GST for 
two systems, which is an extension of the concept of generalized synchronization. The definition of the 
GST is described as follows. 

Definition 1: Consider two systems 
( 1) ( ( ))k F k+ =X X ,                                                                                                                              (1) 
( 1) ( ( ), ( ))k G k k+ =Y Y X ,                                                                                                                      (2) 

where 
1( ) ( ( ), , ( ))T

nk x k x k= …X ,                                                                                                                   (3) 

1( ) ( ( ), , ( )) ,T
mk y k y k m n= … ≤Y ,                                                                                                       (4) 

1( ( )) ( ( ( )), ,, ( ( ))) T
nF k f k f k= …X X X ,                                                                                                  (5) 

1( ( ), ( )) ( ( ( ), ( )) ,, ( ( ), ( ))) T
mG k k g k k g k k= …Y X Y X Y X .                                                                        (6) 

If there exists a transformation 
: n mH →¡ ¡ ,                                                                                                                                        (7) 

1( ( )) ( ( ( )), , ( ( ))) T
mH k h k h k= LX X X ,                                                                                                        (8) 

and ( (0), (0)) n m∈ ×¡ ¡X Y , for 0∀ >ò  there exists 1 0δ >  and 2 0δ >  such that all trajectories of (1) 
and (2) with initial conditions 0 1 0 2( (0), (0)) ( , ) ( , ) n mB Bδ δ∈ × ⊂ ×¡ ¡X Y X Y  satisfy: 

( ( )) ( ) ,mH k k k− < → ∞‖ ‖ òX Y ,                                                                                                         (9) 
where 

T
1( ) ( ( ), , ( ))m mk x k x k= LX . 

Then the systems (1) and (2) are said to be in GST with respect to the transformation H . System (1) is 
called the driving system, system (2) is said to be the driven system.  

Now a general  problem is:  if two systems can achieve GST, what kinds of representations should 
these systems have? To answer this question, we propose the following constructive theorem: 

Theorem 1: , , , ( ) and ( , )m F GX Y X X Y X  be defined by (3)-(6), suppose that  

1 2 1 2( , , , ) ( , , , )m mH x x x y y y… = … , 
If the two systems (1) and (2) are in GST via the transformation ( )mH=Y X , if, and only if, the driven 
system function ( , )G Y X  given in (2) has the following form: 

( )( , ) ( , )m mG H F q= −  Y X X X Y , 
where 

( ) ( ) ( ) ( )( )1 2, , ,
T

m mF f f f= LX X X X , 
and the function 

1 2( , ) ( ( , ), ( , ), , ( , )) T
m m m m mq q q q= …X Y X Y X Y X Y , 

guarantees that the zero solution of the following error equation is stable on the open set 0 1( , )B δX  

0 2( , )B δ× Y : 

( ) ( )( ) ( )1 1 ( , )m mqkk H k+ = − + =e X Y X Y .                                                                               (10) 
:Proof  Denote 

( )( , ) ( , )m mG H F q− = −  Y X X X Y , 
Then 

( ) ( )( ) ( )1 1 ( , ).1m mkk H k q+ = − + =+e X Y X Y  
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Therefore, two dynamic systems (1) and (2) are in GST via the transformations ,H  if and only if the 
function ( , )mq X Y  makes the trajectory in (10) tends to zero solution stable. This completes the 
proof.■ 
Remark 1: This theorem provides a general approach to construct a discrete GST system. 

A novel Chaotic Map and GST System 
In this section, using the GST theorem constructs a discrete GST system. Firstly, we propose a novel 
chaotic system: 

( ) ( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )( )

1 1 2 3

2 1 2

3 3 2

4 3 4

1 3sin 2sin cos

2sin 7sin

 

4sin

4

1

1

s n .1 i

k k k

k k k

k k

x k x x x

x x x

x x x k

x k k xx k

+ = +

= − +




+
 +
 + +

−



=

=

                                                                            (11) 

The  calculated Lyapunov exponents of this new system are {1.2433, 0.8209, 0.6974, 0.2650}. 
Hence system (11) is a chaitic system. Now, select the following initial conditions: 

(0) ( 0.112,0.245,1.501,0.659) TX = − .                                                                                         (12) 
The orbits of the state variables x1, x2 x3, x4 for the first 5000 iterations are shown in Figs. 1(a)-1(d). A 
systematic computer simulation shows that the orbits of system (11) display chaotic characteristics as 
theory expects. 
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Figure 1. Chaotic trajectories of variables: (a) ( ) ( ) ( )1 2 3k kx x kx− − , (b) ( ) ( ) ( )1 2 4k kx x kx− − , (c) 

( ) ( ) ( )2 3 4k kx x kx− − , and (d) ( ) ( ) ( )1 3 4k kx x kx− − . 
Secondly, construct an invertible matrix 

9 4 7 2
4 5 3 1
5 2 0 3
3 1 2 7

A

− 
 − =
 
 

− 

,                                                                                                              (13) 
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define a transformation 4 4:H →¡ ¡  as follows 
T

1 2 3 4( ) ( ( ), ( ), ( ), ( ))H A h h h h=X X X X X X@ .                                                                              (14) 
Motivated by the case in [29], we consider the following system 

( ) ( )

( ) ( )

( ) ( )

( ) ( )3

1 2

1
2

3 4

4

1

1
1.01

1

1 .
1.01

e e

e
e

e e

k k

k
k

e
e

k k

k
k

=+

 +


= −

=

=

+

+ −






                                                                                                                     (15) 

Then we will show that the error equation 
( ) ( ) ( ) ( ) ( )( )1 2 3 41 1 , 1 , 1 , 1k e k e k e k e k+ + + + +e @ , 

is zero solution stable. In order to prove equation (15) is zero stable, we need the following lemma 
Lemma 1: ([30]) If there exists a positive definite function ( )1 2 3 4, , ,V e e e e  such that 

( )1 2 3 4, , ,V e e e e∆  is negative semidefinite, then the equation (15) is zero stable. 
Proof of the zero solution stable of system (15): according to Lemma 1, we can construct a Lyapunov 
function 

( ) 2 2 2 2
1 2 3 4 1 2 3 4, , ,V e e e e e e e e= + + + . 

Then 
( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( )

1 2 3 4 1 2 3 4 1 2 3 4

2 2 2 2 2 2 2 2
2 1 4 3 1 2 3 4

2 2
1 3

, , , 1 , 1 , 1 , 1 , , ,

1 1
1.0201 1.0201

0.0201 0.0201 0, 0
1.0201 1.0201

V e e e e V e k e k e k e k V e k e k e k e k

e k e k e k e k e k e k e k e k

e k e k for

∆ = + + + + −

= + + + − − − −

= − − ≤ ≠e

 

Therefore, the system (15) is zero solution stable.  
Let  

( ) ( )( ) ( ) ( ) ( ) ( )( )2 1 4 3, , /1.01, , /1.01
T

q k k e k e k e k e k= − −X Y , 
where 

( ) ( )( ) ( )mk kH k−=e X Y . 
Select 

( ) ( )( ) ( ) ( )( )1 [ 1 ] ,k A F k q k k+ = + −Y X X Y ,                                                                              (16) 
as a driven system. Then from Theorem 1, system (11) and (16) are GST with respect to the 
transformation H . 

Now we choose ( )17  as the initial conditions 

30.456, 40.708, 0.543, 1(0) 7.46 .7( )TY = − − −                                                                            (17) 
The chaotic orbits of the state variables y1, y2, y3, y4 for the first 5000 iterations are shown in Figs. 
2(a)-2(d). The simulation results show that the system has chaotic attractor characteristics. 
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Figure 2. Chaotic trajectories of variables: (a) ( ) ( ) ( )1 2 3k ky y ky− − , (b) ( ) ( ) ( )1 2 4k ky y ky− − , 

(c) ( ) ( ) ( )2 3 4k ky y ky− − , and (d) ( ) ( ) ( )1 3 4k ky y ky− − . 
Extensive simulations show that the dynamic behaviors of the GST system have chaotic attractor 

characteristics. Figs. 3(a)-3(d) show that ( )kX  and ( )kY  are in GST with respect to transformation 
H A= , as the theory expects. 
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Figure 3. Chaotic trajectories of variables: (a) 1 1( ( )) ( )h k ky−X , (b) 2 2( ( )) ( )h k ky−X , (c) 

3 3( ( )) ( )h k ky−X , and (d)  4 4( ( )) ( )h k ky−X . 
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Chaotic Pseudorandom Number Generator 

Pseudorandom Number Generator 
Denote 

{ ( ) | 1,2, , }i ix k k N= = LX ,                                                                                                                  (18) 
{ ( ) | 1,2, , }i iy k k N= = LY ,                                                                                                                (19) 

where ix  and iy  are defined by (11) and (16). Firstly, introduce a transformation 1T : {0,1,→¡ L  
16, 2 1}− , which transforms the chaotic streams of GST systems (18) and (19) into key streams. 
Let 1510L = , then  

( )( ) ( ) ( )( )( )( )16
1 1 1 1mi1 mod / max 2n min ,C round L= −−X X X X .                                                  (20) 

( )( ) ( ) ( )( )( )( )16
1 1 1 1mi2 mod / max 2n min ,C round L= −−Y Y Y Y .                                                  (21) 

Therefore, the 1T  is defined by 

( ) ( )1 1
16

10 , mod 1 2,2C T C C= = +X Y .                                                                                                 (22) 
Now  we can design a CPRNG based on the transformation (20)-(22) and the GST systems (11) and 

(16). The seeds of the CPRNG are the initial conditions of the GST systems, which can be chosen via 
random number generators. Therefore the output key streams of the CPRNG can be obtained via  
transformation (22) acting on the chaotic streams of the GST systems (11) and (16). 

Pseudorandomness Test 
The FIPS 140-2 test consists of four sub-tests: Monobit Test, Poker Test, Runs Test and Long Runs 

Test.  Each test needs a single stream of 20,000 one and zero bits from the keystream generator. Any 
failure in the first three tests means that the corresponding quantity of the sequences falls out the 
required intervals listed in the second column in Table 1. The Long Runs test is passed if there are no 
runs of length 26 or more. 

It has been pointed out that the required intervals of the Monobit test, the Porker test and the Runs 
test correspond to the confident interval with significant levels: 

4 410 ,10α − −= and 71.6 10−× (approximatly), respectively ([27], [31]). The required intervals of the  
Runs test  with significant  levels: 410α −= are listed in the third column in Table 1. We denote the 
accepted intervals by G FIPS 140-2 test. 

According to Golomb's three postulates on the randomness that ideal pseudorandom sequences 
should satisfy [32], the ideal values of the first three tests are listed in the 4th column in Table 1. 

The FIPS 140-2 test suit and G FIPS 140-2 test suit are used to test 1,000 keystreams randomly 
generated, respectively by CPRNG with perturbed randomly initial condition (0)X , (0)Y  and the 
parameters of matrix (13) in the range 16 1| | [10 ,10 ]− −∈ò . 
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Table 1  The required intervals of the FIPS 140-2 Monobit Test, Porker Test and Runs Test. Here MT, 
PT, and LT represent the Monobit Test, the Porker Test and the Long Runs Test. k represents the 
length of the run of a tested sequence. 2DTχ  represents 2χ  distribution. 

Test FIPS 140-2 
Standand α =0.0001 Golomb’s 

Item Required Intervals Required Intervals Postulates 
MT 9,725 ∼ 10,275 9,725 ∼ 10,275 10000 
PT 2.16 ∼ 46.17 2.41 ∼ 44.26 2DTχ  
LT <26 <26 — 
k Run Test Run Test Run Test 
1 2,315 ∼ 2,685 2,362 ∼ 2,638 2,500 
2 1,114 ∼ 1,386 1,153 ∼ 1,347 1,250 
3 527 ∼ 723 556 ∼ 694 625 
4 240 ∼ 384 264 ∼ 361 313 
5 103 ∼ 209 122 ∼ 191 156 

6+ 103 ∼ 209 122 ∼ 191 156 
In order to test the pseudorandomness of the CPRNG, we transform the “16-bit” stream defined by 

(22) to the { }0,1  bit stream as follows. 

Construct a transform 2T : { }16{0,1, , 2 1} 0,1− →L  which is defined by 

2 22 21T T T= ° ,                                                                                                                                           (23) 
16. . {0,1, , 2 1}Ns t ∀ ∈ −Ly  

21( ) 2 ( )T dec bin=y y . 
Let 2 ( )dec bin=z y , then 

22 ( ) (:)T =z z ,  
where  dec2bin and (:)z  are both Matlab commands. 

Finally the  transformation 4: {0,1}T →¡  is defined via 

2 1T T T= ° .                                                                                                                                              (24) 
All sequences successfully pass the FIPS 140-2 test and there are 13 sequences failing to pass the G 

FIPS 140-2 test. The calculated results are listed in the 3rd column in Table 2, in which the statistic 
results of all tests are described by mean values ±  standard deviation (Mean ± SD). 

The well-known RC4 was designed by Rivest of the RSA Security in 1987, which has been widely 
used in popular protocols such as Secure Sockets. The RC4 Algorithm as PRNG can be designed via 
the following Matlab commands: 
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N=20000; 
K=randi([0 254],1,255); 
S=[0:255-1];j=0; 
for i=1:255 

j=mod(j+S(i)+K(i),255); 
Sk=S(j+1); 
S(j+1)=S(i); 
S(i)=Sk; 

end 
C=zeros(1,N); j=0;i=0; k=1; 
for l=1:N/8 

i=mod(i+1,255); 
j=mod(j+S(i+1),255); 
Sk=S(j+1); 
S(j+1)=S(i+1); 
S(i+1)=Sk; 
C(l)=S(mod(S(j+1)+S(i+1),255)+1); 

end 
C=(dec2bin(C))'; 
C=C(:); 
C=bin2dec(C); 

Here, “randi([0 254], 1, 255)” generates a vector of uniformly distributed random integers 
{0,1, , 254}L  of dimension 255; “mod” means taking modulus after division; “zeros(1,N)” is a zero 
row vector of dimension N. Consequently, the RC4 Algorithm-based PRNG is designed. Then, the 
FIPS 140-2 test suite and G FIPS 140-2 test suite are used to test 1,000 keystreams randomly 
generated by the RC4 PRNG. Results show that there is only one sequence failing to pass the FIPS 
140-2 test, and there are 12 sequences failing to pass the G FIPS 140-2 test criterions. The statistic test 
results are shown in the 4th column in Table 2. 

Finally, ZUC algorithm is a stream cipher that forms the heart of the third generation partnership 
project (3GPP) confidentiality algorithm 128-EEA3 and the 3GPP integrity algorithm 128-EIA3. Now, 
using FIPS 140-2 and G FIPS 140-2 test the 1,000 keystreams randomly generated by the ZUC 
algorithm program (see Appendix A in [28]). Results show that all of the 1,000 sequences passed the 
FIPS 140-2 test criterions, and there are 21 sequences failing to pass the G FIPS 140-2 test criterions. 
The statistic test results are listed in the 5th column in Table 2. 

It can be seen that  the statistical properties of the randomness of the sequences generated via the 
CPRNG, the RC4 algorithm and the ZUC algorithm do not have significant differences.. 
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Table 2  The confident intervals of the FIPS 140-2 tested values of 1,000 key streams generated by the 
new CPRNG, the RC4 PRNG and the ZUC algorithm with significant level 0.0001α = . Here, SD 
represents the standard diviation. 

Test bits CPRNG RC4 ZUC 
item  Mean± SD Mean± SD Mean± SD 

MT 0 10000.00 ± 68.210 9999.7 ± 70.092 9998.4 ± 71.843 
1 9999.99 ± 68.210 10000 ± 70.092 10002 ± 71.843 

PT — 14.944 ± 5.3292 14.87 ± 5.433 15.043 ± 5.5491 

LT 0 13.738 ± 1.9766 13.6 ± 1.8214 13.488 ± 1.829 
1 13.607 ± 1.8862 13.642 ± 1.9307 13.595 ± 1.9305 

1 0 2499.5 ± 47.733 2500.9 ± 45.568 2501.9 ± 45.735 
1 2498.5 ± 47.721 2501.4 ± 46.398 2502.7 ± 46.121 

2 0 1248.77 ± 31.167 1250.5 ± 31.372 1252.1 ± 32.606 
1 1250.13 ± 32.143 1249 ± 31.048 1249.5 ± 32.221 

3 0 624.99 ± 22.721 624.95 ± 22.964 624.09 ± 22.648 
1 624.98 ± 22.956 625.65 ± 22.93 624.64 ± 23.455 

4 0 312.51 ± 16.698 311.71 ± 16.548 312.56 ± 16.748 
1 312.04 ± 16.667 312.17 ± 16.822 312.72 ± 16.506 

5 0 155.90 ± 12.208 156.41 ± 12.069 155.65 ± 12.097 
1 155.80 ± 11.900 156.6 ± 11.958 156.66 ± 12.369 

6+ 0 156.69 ± 11.808 156.15 ± 11.792 155.75 ± 11.719 
1 156.63 ± 11.433 155.79 ± 11.979 155.82 ± 11.497 

 
Key Space 
The key set parameters of CPRNG includes the initial condition (0), (0)X Y  and the matrix 

,( )i jA α= . It can be proved that if the perturbation matrix ,( )i jδ∆ =  satisfies 

,| | 0.5907,i jδ <  
the matrix A + ∆  is still invertible. Therefore the CPRNG have 4 + 4 + 16 key parameters denoted 

by 
1 2 24{ , , , }.s k k k= LK                                                                                                                                 (25) 

Let the key set be  perturbed by 
1 2 24( ) [ , , , ],s s δ δ δ∆ = + …K K                                                                                                                    (26) 

where 
16 110 | | 10 , 1, , 24.i iδ− −≤ ≤ = L  

Now  we compare the difference between the key stream S  with 20,000 codes’ length generated by 
the key set (25) and the key streams '

pS s generated by the perturbed key set (26), respectively.The 
comparison results are shown in the third column in Table 3, where SV denotes the statistic values, DC 
the different codes, and CC the correlation coefficients. 

The results show that the average percentage of different codes is 49.9982%, which is very closed 
to the ideal value of 50%. And the average of the correlation coefficients is 5.6190e-3, also very closed 
to the ideal value of 0. 

Now, compare the same key stream S  with the 1000 key streams '
mS s  generated by the Matlab 

command randi([0 1], 1, 20000). The comparison results are shown in the fourth column in Table 3. 
Observed that the average percentage of different codes is 50.0145% and the the average of the 
correlation coefficients is 5.7424e-3. The results suggest that the key stream S has no significant 
correlations with the perturbed key streams '

pS s . The Matlab platform uses double-precision decimal 
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computations, which means that each computed  decimal number has 16 bits’ accuracy. In summary, 
the key space of the CPRNG is larger than 15 24 119510 2× > . 

 
Table 3 The statistic data for the percentages and correlation coefficients of the codes of the  key 
stream variations between S  and '

pS s  as well as S  and '
mS s . 

 

Item SV '
pS s  '

mS s  

DC 
min 

mean 
max 

48.9600% 
49.9982% 
51.1000% 

48.9350% 
50.0145% 
51.2199% 

CC 
min 

mean 
max 

2.0800e-6 
5.6190e-3 
2.1962e-2 

4.1600e-6 
5.7424e-3 
2.4359e-2 

Simulation on SESAE 
In a recent paper [33], we have introduced a new encryption scheme with avalanche effect: 

Definition 2: Let 1 2{ , , , }nP p p p= …  be a binary key stream with d-bit segments generated by a 
CPRNG, 1 2{ , , , }nM m m m= … be a binary plaintext stream, and 1 2{ , , , }nC c c c= … be a ciphertext 
stream. Then, the stream encryption scheme with avalanche effect (SESAE) is described as follows. 

(1) The ciphertext ( , )C E M P=  is defined by 
0,

~
    

 ,
 

1 
i i

i
i i

p if m
c

p if m
=

=  =
                                                                                                                       (27) 

where ~ ip  is defined to be the bit string obtained by replacing all '0s  in '
ip  with '1s , and all '1s  in '

ip  
with '0s . 

(2) The corresponding decrypted plaintext 1( , )M E C P−=  is determined by 
0 ,
1 .

i i
i

i i

if c p
m

if c p
=

=  ≠
                                                                                                                               (28) 

Definition 3: ([33])  A CPRNG, S, which generates d-bit key streams, is called an ideal CPRNG, if 
S has the following properties: 

(1) The period of any key stream generated by the PRNG is larger than 2d . Its seed space and key 
space are both larger than 5122 . 

(2) In one period of a pseudorandom key streams generated by the PRNG, the distributions of 
different d-bit segments in the key stream is homogenous. That is, if the period 2dp n= × , then the 
number of each different d-bit segment is equal to n. If the the period p is not an integer multiple of 2d , 
then the difference between the numbers of different d-bit segments is at most one. 

 (3) The two key streams 1 2,P P  generated by any two different seeds have (2 1) / 2 100%d d− ×  
different d-bit segments.  

Now, we use the CPRNG to investigate SESAE on an RGB image Lotus with 250 140×  pixels as 
shown in Fig. 4(a). The simulation is implemented via the Matlab 2013a platform on a PC computer. 
The simulations procedures are described below: 

(1) Transform the image Lena to a binary plaintext steam 1 2{ , , , },nM m m m= … where 
250 140 3 8n = × × × . 
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(2) Use the CPRNG with initial conditions (12) and (17) to generate a key 
stream 1 2 1000{ , , , }nP p p p += … . 

(3) Drop the first 1000 iterative values, and use formula (27) and the key stream P  to encrypt the 
plaintext steamM , and obtain a ciphertext ( , )C E M P= . 

(4) Using formula (28) and the key stream to decrypt the ciphertext, and obtain a decrypted 
plaintext image 1( , )M E C P−=  without errors (see Fig. 4(b)). 

(5) Randomly disturb the initial conditions (12) and (17), and matrix (13) for 1000 times in the range 
16 1| | [10 ,10 ]− −∈ò , and obtain disturbed key streams (Dropping the first 1000 iterative values): 

, 1,2, ,1000iP i = … . 
(6) Use 1 1000{ , , }P P…  to decrypt the ciphertext, and obtain the decrypted plaintext: 

1( , ), 1,2, ,1000i iM E C P i−= = … . 

(7) Change iM  to RGB images. After changing iM  to RGB images, all images become almost 
pure white images. There are total of 840000 {0, 1} codes in each decrypted image. Among the 
decrypted images, the minimum number of '0s  is 3, and the maximum of '0s  is 28. Let ,i jI  denote  the 
jth image having number “i” of zero codes. The first five images with minimum zero codes and the last 
five images with maximum zero codes are shown in Figs. 4(c)-(l). Observe that the percentages of the 
number of “1” codes are in the range [99.9970%,99.9998%] , which are very closed to the ideal value 

16 16100 (2 1) / 2 % 99.9984%.× − =  
In summary, our experimental results suggest that the CPRNG is a promising candidate for practical 

applications. 

 
(a)                                                            (b) 

 
(c)                                                            (d) 

 
(e)                                                            (f) 
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(g)                                                            (h) 

 
(i)                                                            (j) 

 
(k)                                                            (l) 

Figure 4. (a) Original image. (b) Decrypted image without error. Ten decrypted images via key streams 
generated with slightly perturbed initial conditions and system parameters in the 
range 16 1[10 ,10 ]− − :(c) 1,1I , (d) 3,1I , (e) 3,2I , (f) 3,3I , (g) 4,1I , (h) 23,1I , (i) 23,2I , (j) 24,1I , (k) 24,2I , and (l) 

25,1I . 

Conclusions 
(1) It introduces the definition of generalized stability (GST) for discrete system. This definition is a 

generalization for the definition of generalized synchronization for discrete systems. 
(2) It presents  a new 4D discrete chaotic map. Using this map and GST theorem designs a 8D GST 

system. 
(3) It stablished a constructive theorem on GST discrete system. This theorem provides a general 

representation for GST discrete systems. 
(4) It constructs an 8D GST-based CPRNG and compares the results tested by the FIPS 140-2 test 

on the RC4 PRNG and the ZUC algorithm show that the randomness of the sequences generated via 
the CPRNG is promising. The simulations also suggest  that the key space of the CPRNG is larger than 

11952 , which is large enough to against brute-force attacks. 
(5) It gives an image encryption example by using the CPRNG with the SESAE. Simulations show 

that the CPRNG is able to generate significant avalanche effects. The results suggest that the CPRNG 
is a qualified candidate for SESAE. 
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