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For any baseline continuous G distribution, we propose a new generalized family called the Kumaraswamy-G

Poisson (denoted with the prefix “Kw-GP”) with three extra positive parameters. Some special distributions

in the new family such as the Kw-Weibull Poisson, Kw-gamma Poisson and Kw-beta Poisson distributions

are introduced. We derive some mathematical properties of the new family including the ordinary moments,

generating function and order statistics. The method of maximum likelihood is used to fit the distributions in

the new family. We illustrate its potentiality by means of an application to a real data set.
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1. Introduction

In recent years, several ways of generating new distributions from classic ones were developed and

discussed. The beta-generated family was proposed by Eugene et al. (2002) and further discussed

in Zografos and Balakrishnan (2009), who introduced the gamma-generated family of distributions.

More recently, Cordeiro and de Castro (2011) defined the Kumaraswamy-G (“Kw-G”) family as

follows. If G(x) denotes the cumulative distribution function (cdf) of a random variable, the Kw-G
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cdf is given by

Ha,b(x) = 1− [1−G(x)a]b, (1.1)

where a > 0 and b > 0 are two additional shape parameters to the G distribution, whose role is to

govern skewness and tail weights. The probability density function (pdf) corresponding to (1.1) is

given by

ha,b(x) = abg(x)G(x)a−1[1−G(x)a]b−1, (1.2)

where g(t) = dG(t)/dt. Equation (1.2) does not involve any special function, such as the incom-

plete beta function, as is the case of the beta-G distribution proposed by Eugene et al. (2002). The

Kw-G distribution is obtained by adding two shape parameters a and b to the G distribution. The

generalization (1.2) contains distributions with unimodal and bathtub shaped hazard rate functions.

It also contemplates a broad class of models with monotonic hazard rate function.

We now provide a physical interpretation of the proposed model. Suppose that a system has

N subsystems functioning independently at a given time, where N is a truncated Poisson random

variable with probability mass function (pmf)

pn = Pr(N = n) =
λ n

(eλ −1)n!
(1.3)

for n = 1,2, . . . Suppose that the failure time of each subsystem has the Kw-G distribution defined

by the cdf (1.1) for x> 0. Further, let Yi denote the failure time of the ith subsystem and X denote the

time to failure of the first out of the N functioning subsystems. We can write X = min{Y1, . . . ,YN}.
The conditional cdf of X given N is

F(x | N) = 1−P(X > x | N) = 1−P(Y1 > x)N = 1− [1−Ha,b(x)]N .

So, the unconditional cdf of X (for x > 0) can be expressed as

F(x) =
1

(eλ −1)

∞

∑
n=1

λ n {1− [1−Ha,b(x)]n}
n!

and then

F(x) =
1− exp[−λHa,b(x)]

1− e−λ
. (1.4)

Equation (1.4) is called the Kumaraswamy-G Poisson (“Kw-GP”for short) family of distribu-

tions. Several new models can be generated by considering special distributions for G. The corre-

sponding pdf and hazard rate function (hrf) are

f (x) =
λ ha,b(x)exp[−λHa,b(x)]

1− e−λ
(1.5)

Published by Atlantis Press
Copyright: the authors

223



The Kumaraswamy-G Poisson Family of Distributions

and

ϑ(x) =
λ ha,b(x)exp[−λHa,b(x)]
−e−λ + exp[−λHa,b(x)]

, (1.6)

respectively. Equation (1.5) has three extra parameters λ > 0, a > 0 and b > 0 to the parameters of

the G distribution. Note that when x→ ∞ we have to Ha,b(x)→ 1. So we have to limx→∞ F(x) =

1. If G is continuous right, have F(x) is also continuous right. Note also that for x→ −∞, with

x > 0 implies Ha,b(x)→ 0, ie, limx→∞ F(x) = 0. Thus, X has cumulative distribution function F(x).

Deriving (1.4) have (1.5), ie, (1.5) is the probability density function of the X .

We shall refer to (1.5) as the Kw-GP pdf. If λ → 0, f (x) tends to ha,b(x). A random variable with

density function (1.5) is denoted by X ∼ Kw-GP(λ ,a,b,ηηη), where ηηη is the vector of the baseline

parameters.

The rest of the paper is organized as follows. In Section 2, we present three special models of

the Kw-GP family corresponding to the Weibull, gamma and beta distributions. Section 3 provides

some general useful expansions for the Kw-GP density function. Moments of the new family are

derived in Section 4. Generating function and quantile function are derived in Sections 5 and 6,

respectively. The Rényi and Shannon entropies and the reliability are determined in Sections 7

and 8, respectively. Characterizations of the Kw-GP distribution are described in Section 9. Order

statistics are studied in Section 10. Maximum likelihood estimation is investigated in Section 11.

An application to a real data set is performed in Section 12. Some conclusions are given in Section

13.

2. Special Kw-GP distributions

The Kw-GP family of densities (1.5) allows for greater flexibility of its tails and can be widely

applied in many areas of engineering and biology. It will be most tractable when the cdf G(x) and

pdf g(x) have simple analytic expressions. Now, we provide some special Kw-GP distributions.

2.1. Kw-Weibull Poisson (Kw-WP)

The Weibull cdf with parameters β > 0 and c > 0 is G(x) = 1−e−(βx)c
for x > 0. Correspondingly,

the Kw-WP pdf, say Kw-WP(λ ,a,b,c,β ), reduces to

f (x) =
λ abcβ c

eλ −1
xc−1

[
1− e−(βx)c

]a−1{
1−
[
1− e−(βx)c

]a}b−1
×

exp
[

λ

{
1−
[
1− e−(βx)c

]a}b
− (βx)c

]
. (2.1)
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For c = 1, we obtain the Kw-exponential Poisson distribution. The Kw-WP distribution for a = 1,

c = 1 and λ → 0 corresponds to the exponential distribution with parameters β ∗ = bβ . The hrf

corresponding to (2.1) is given by

ϑ(x) =−
λ abcβ c xc−1

[
1− e−(βx)c]a{

1−
[
1− e−(βx)c]a}b−1

[
e(βx)c−1

]{
exp
[
−λ
{

1−
[
1− e−(βx)c]a}b

]
−1
} .

Plots of the Kw-WP density and hrf for selected parameter values are displayed in Figure 1.
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Fig. 1. Plots of the density and hrf of the Kw-WP distribution for some parameter values. (a) For c = 1.5 and β = 1.2.

(b) For c = 1.5 and β = 0.4. (c) For c = 1.5 and β = 0.7. (d) For c = 0.5 and β = 0.6.

2.2. Kw-gamma Poisson (Kw-GaP)

Let Y be a gamma random variable with cdf G(y) = γ(α,βx)/Γ(α) for y,α,β > 0, where Γ(·)
is the gamma function and γ(α,y) =

∫ y
0 tα−1e−tdt is the incomplete gamma function. The density
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function of a random variable X following the Kw-GaP distribution, say X ∼Kw-GaP(λ ,a,b,α,β ),

can be expressed as

f (x) =
λ abβ αxα−1

[
γ(α,βx)

Γ(α)

]a−1{
1−
[

γ(α,βx)
Γ(α)

]a}b−1
exp
[

λ

{
1−
[

γ(α,βx)
Γ(α)

]a}b
−βx

]
(
eλ −1

)
Γ(α)

.

For α = 1, we obtain the Kw-exponential Poisson distribution. For a = 1, α = 1 and λ → 0, the

Kw-GaP reduces to the exponential distribution with parameter β ∗ = bβ . The Kw-GaP hrf is given

by

ϑ(x) =−
λ abβ αxα−1e−βx

[
γ(α,βx)

Γ(α)

]a{
1−
[

γ(α,βx)
Γ(α)

]a}b−1

γ(α,βx)
{

exp
[
−λ

{
1−
[

Γ(α,xβ )
Γ(α)

]a}b
]
−1
} .

Plots of the Kw-GaP density and hrf for some parameter values are displayed in Figure 2.

2.3. Kw-beta Poisson (Kw-BP)

Consider the beta distribution with positive shape parameters α > 0 and β > 0 and pdf and cdf (for

0 < x < 1) given by

g(x) =
1

B(α,β )
xα−1(1− x)β−1 and G(x) = Ix(α,β ) =

Bx(α,β )

B(α,β )
,

where Bx(α,β ) =
∫ x

0 wα−1(1−w)β−1dw is the incomplete beta function, B(α,β ) =
∫ 1

0 wα−1(1−
w)β−1dw is the beta function and Ix(α,β ) = Bx(α,β )

B(α,β ) is the regularized incomplete beta function.

The density of a random variable X having the Kw-BP distribution, say X ∼ Kw-BP(λ ,a,b,α,β ),

can be expressed as

f (x) =
λ abxα−1(1− x)β−1 [Ix(α,β )] a {1− [Ix(α,β )]a}b−1 exp

[
λ {1− [Ix(α,β )] a}b

]
(
eλ −1

)
Bx(α,β )

.

Plots of the Kw-BP density for selected parameter values are displayed in Figure 3.

3. Expansion for the density function

The pdf (1.5) can be expressed as a linear combination of Kw-G density functions. Using the power

series for the exponential function, we can rewrite (1.5) as

f (x) = ha,b(x)
∞

∑
k=0

tk Ha,b(x)k, (3.1)
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Fig. 2. Plots of the density and hrf of the Kw-GaP distribution for some parameter values. (a) For α = 7 and β = 3.2. (b)

For α = 0.5 and β = 0.7. (c) For α = 0.5 and β = 0.7. (d) For α = 1.5 and β = 2.7.

where

tk =
(−1)k λ k+1

(1− e−λ )k!
.

Substituting (1.1) and (1.2) in equation (3.1) and using the binomial expansion, we obtain

f (x) =
∞

∑
k=0

ωk ha,( j+1)b(x), (3.2)

where

ωk =
λ k+1

1− e−λ

k

∑
j=0

(−1)k+ j

( j+1)!(k− j)!
.
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Fig. 3. Plots of the Kw-BP density function for some parameter values. (a) For α = 1.5 and β = 0.7. (b) For α = 3.5 and

β = 1.5.

It was checked using the Mathematica software (Wolfram, 2003) that ∑
∞
k=0 ωk = 1. Note that the

finite series ∑
k
j=0(−1)k+ j/[( j+1)!(k− j)!] = (−1)k/[(1+ k)k!]. So we need to show that

1
1− e−λ

∞

∑
k=0

(−1)kλ 1+k

(1+ k)k!
=

1
1− e−λ

∞

∑
k=0

(−1)kλ 1+k

(k+1)!
= 1.

Note also that expanding (1− e−λ ) in Taylor series around zero, we have

(1− e−λ ) = λ − λ 2

2
+

λ 3

6
− λ 4

24
+

λ 5

120
− λ 6

720
+

λ 7

5040
+ · · · .

If we expand the series term by term, we arrive precisely in the expansion just above. Therefore, we

conclude that ∑
∞
k=0 ωk = 1.

The cdf corresponding to (3.2) can be expressed as

F(x) =
∞

∑
k=0

ωk Ha,( j+1)b(x). (3.3)

Based on equations (3.2) and (3.3) some structural properties as moments and function generator

of moments of the Kw-GP family of distributions can be obtained from well-established properties

of the Kw-G distribution. Equations (3.2) and (3.3) can also be expressed as linear combinations of

exponentiated-G (“exp-G”) distributions.

For an arbitrary baseline cdf G(x), we write Z ∼ exp-G(α) if Z follows the exp-G distribution

with power parameter α . The cumulative distribution and density functions of Z are given by

Πα(x) = G(x)α and πα(x) = α g(x)G(x)α−1,
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respectively. Substituting (1.1) in equation (3.2) and using the binomial expansion, we obtain

f (x) =
∞

∑
l=0

vl π(l+1)a(x), (3.4)

where

vl = vl(λ ,b) =
λ b

(1− e−λ )(l +1)!

∞

∑
k=0

k

∑
j=0

(−1)k+l+ j λ k Γ[( j+1)b]
j!(k− j)!Γ[( j+1)b− l]

.

Integrating (3.4), we can write

F(x) =
∞

∑
l=0

vl Π(x)(l+1)a, (3.5)

where Π(x)(l+1)a denotes the exp-G cdf with power parameter (l +1)a. Equation (3.4) reveals that

the Kw-GP density function is a linear combination of exp-G densities. Thus, some structural prop-

erties of the Kw-GP family of distributions such as the ordinary and incomplete moments and

generating function can be obtained from well-established properties of the exp-G distributions.

Equations (3.2)-(3.5) are the main results of this section.

4. Moments

Hereafter, we shall assume that G is the cdf of a random variable Y and that F is the cdf of a

random variable X having density function (1.5). The moments of the Kw-GP distribution can be

determined from the (r,s)th probability weighted moment (PWM) of Y defined by

τr,s = E[Y r G(Y )s] =
∫

∞

−∞

yr G(y)s g(y)dy. (4.1)

In fact, from equation (3.4), we can write

E(X r) =
∞

∑
l=0

v∗l τr,(l+1)a−1, (4.2)

where

v∗l = v∗l (λ ,a,b) =
λ ab

(1− e−λ ) l!

∞

∑
k=0

k

∑
j=0

(−1)k+l+ j λ k Γ[( j+1)b]
j!(k− j)!Γ[( j+1)b− l]

.

Thus, the moments of any Kw-GP distribution can be expressed as an infinite weighted sum of the

baseline PWMs. A second formula for τr,s can be based on the parent quantile function QG(x) =

G−1(x). Setting G(x) = u, we obtain

τr,s =
∫ 1

0
QG(u)r usdu. (4.3)

The ordinary moments of several Kw-GP distributions can be calculated directly from equations

(4.2) and (4.3). For example, the moments of the Kw-exponential Poisson (with parameter β > 0)
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are given by

E(X r) = r!β
r

∞

∑
l,m=0

(−1)r+m v∗l
(
(l+1)a−1

m

)
(m+1)r+1 .

5. Moment generating function

The moment generating function (mgf) of X , say M(t) = E(etX), comes from (3.4) as an infinite

weighted sum

M(t) =
∞

∑
l=0

vl Ml(t), (5.1)

where Ml(t) is the mgf of Yl ∼ exp-G((l +1)a). Hence, for several Kw-GP distributions, M(t) can

be immediately determined from the mgf of the G distribution. The mgf of Yl is given by

Ml(t) = (l +1)a
∫

∞

0
etxg(x)G(x)(l+1)a−1dx.

Setting G(x) = u, we can write Ml(t) in terms of the baseline quantile function QG(x)

Ml(t) = (l +1)a
∫ 1

0
exp[tQG(u)]u(l+1)a−1du. (5.2)

The generating function of some Kw-GP distributions can follow immediately from equations (5.1)

and (5.2). For example, the mgf’s of the Kw-exponencial Poisson (with parameter β > 0 and t <

β−1) and Kw-standard logistic Poisson (for t < 1), where G(x) = (1+ e−x)−1, are determined as

M(t) =
∞

∑
l=0

v∗l B[(l +1)a,1− t β ]

and

M(t) =
∞

∑
l=0

v∗l B[1− t,(l +1)a+ t],

respectively.

6. Quantile function

The Kw-GP quantile function, say Q(u) = F−1(u), is straightforward to be computed by inverting

(1.4) provided a closed-form expression for the quantile function QH(u) = H−1
a,b (u) is available.

From equation (1.4), we can write
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Q(u) = QH

(
−λ
−1 log[1− (1− e−λ )u]

)
, (6.1)

where

H−1
a,b (u) = G−1[1− (1−u)1/b]1/a.

The quantiles of X are easily obtained from equation (6.1) and the quantiles of the baseline G

distribution.

7. Entropies

The entropy of a random variable X with density function f (x) is a measure of variation of the

uncertainty. Two popular entropy measures are due to Shannon and Rényi (Shannon, 1951, Rényi,

1961). A large value of the entropy indicates the greater uncertainty in the data. The Rényi entropy

is defined by (for γ > 0 and γ 6= 1)

IR(γ) =
1

(1− γ)
log
∫

∞

0
f γ(x)dx.

Based on the pdf (1.5), the Rényi entropy of the Kw-GP distribution is given by

IR(γ) =
1

(1− γ)
log
∫

∞

0

λ γ hγ

a,b(x)e
−λ γ Ha,b(x)

(1− e−λ )γ
dx

= − log[(1− e−λ )γ ]

(1− γ)
+

1
(1− γ)

log

[
λ

γ
∞

∑
k=0

(−λ γ)k

k!
Ik

]
, (7.1)

where

Ik =
∫

∞

0
hγ

a,b(x)Hk
a,b(x)dx.

The integral Ik can be determined numerically for most baseline G distributions.

The Shannon entropy is given by

E {− log[ f (X)]}= log
(

λ

1− e−λ

)
−E {log[ha,b(X)]}+λ E [Ha,b(X)] .

A general expression for E[Ha,b(X)] follows by using (3.1) and setting Ha,b(x) = u

E[Ha,b(X)] =
∫

∞

0

∞

∑
k=0

tk ha,b(x)Ha,b(x)k+1dx

=
∞

∑
k=0

tk
∫ 1

0
uk+1du =

∞

∑
k=0

tk
k+2

.
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The quantity δX = E {log[ha,b(X)]} may be calculated for special forms of ha,b(x). Thus, we obtain

E {− log[ f (X)]}= log
(

λ

1− e−λ

)
−δX +λ

∞

∑
k=0

tk
k+2

. (7.2)

8. Reliability

The component fails at the instant that the random stress X2 applied to it exceeds the random strength

X1, and the component will function satisfactorily whenever X1 > X2. Hence, R = P(X2 < X1) is

a measure of component reliability. It has many applications especially in the area of engineer-

ing. We derive the reliability R when X1 and X2 have independent Kw-GP(λ1,a1,b1,ηηη) and Kw-

GP(λ2,a2,b2,ηηη) distributions with the same parameter vector ηηη for G. The reliability is defined

by

R =
∫

∞

0
f1(x)F2(x)dx.

The pdf of X1 and cdf of X2 are obtained from equations (3.4) and (3.5) as

f1(x) = g(x;ηηη)
∞

∑
l=0

v∗l (λ1,a1,b1)G(x;ηηη)(l+1)a1−1 and F2(x) =
∞

∑
l=0

vl(λ2,b2)G(x;ηηη)(l+1)a2 ,

where

v∗l (λ1,a1,b1) =
λ1 a1 b1

(1− e−λ1) l!

∞

∑
k=0

k

∑
j=0

(−1)k+l+ j λ k
1 Γ[( j+1)b1]

j!(k− j)!Γ[( j+1)b1− l]

and

vl(λ2,b2) =
λ2 b2

(1− e−λ2)(l +1)!

∞

∑
k=0

k

∑
j=0

(−1)k+l+ j λ k
2 Γ[( j+1)b2]

j!(k− j)!Γ[( j+1)b2− l]
.

Hence,

R =
∞

∑
l=0

v∗l (λ1,a1,b1)vl(λ2,b2)
∫

∞

0
g(x;ηηη)G(x;ηηη)(l+1)(a1+a2)−1dx.

Setting u = G(x), we have

R =
∞

∑
l=0

v∗l (λ1,a1,b1)vl(λ2,b2)
∫ 1

0
u(l+1)(a1+a2)−1dx.

Hence, the reliability of the Kw-GP family reduces to

R =
∞

∑
l=0

v∗l (λ1,a1,b1)vl(λ2,b2)

(l +1)(a1 +a2)
. (8.1)

For the special case λ1 = λ2, a1 = a2 and b1 = b2, we have R = 1/2.
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9. Characterization results

Characterizations of distributions are important to many researchers in the applied fields. An inves-

tigator will be vitally interested to know if their model fits the requirements of a particular dis-

tribution. To this end, one will depend on the characterizations of this distribution which pro-

vide conditions under which the underlying distribution is indeed that particular distribution. Var-

ious characterizations of distributions have been established in many different directions. Here, we

present characterizations of the Kw-GP distribution with pdf (1.5) in terms of a simple relationship

between two truncated moments.

9.1. Characterizations based on truncated moments

In this subsection we present characterizations of Kw-GP distribution in terms of a simple relation-

ship between two truncated moments. Our characterization results presented here will employ an

interesting result due to Glänzel (1987) (Theorem 9.1, below). The advantage of the characteriza-

tions given here is that, cdf F need not have a closed form and are given in terms of an integral

whose integrand depends on the solution of a first order differential equation, which can serve as a

bridge between probability and differential equation.

Theorem 9.1. Let (Ω,F ,P) be a given probability space and let I = [c,d] be an interval for

some c < d (c =−∞ , d = ∞ might as well be allowed) . Let X : Ω→ I be a continuous random

variable with the distribution function F and let q1 and q2 be real functions defined on I such

that

E [q2 (X) | X ≥ x]
E [q1 (X) | X ≥ x]

= η (x) , x ∈ I ,

is defined with some real function η . Assume that q1,q2 ∈C1 (H) , η ∈C2 (H) and F is twice

continuously differentiable and strictly monotone function on the set I . Finally, assume that the

equation ηq1 = q2 has no real solution in the interior of I . Then F is uniquely determined by

the functions q1,q2 and η , particularly

F (x) =
∫ x

c
C∗
∣∣∣∣ η ′ (u)
η (u)q1−q2 (u)

∣∣∣∣exp(−s(u)) du ,

where the function s is a solution of the differential equation s′ = η ′

η − g and C∗ is a constant,

chosen to make
∫

I dF = 1 .

Proposition 9.1. Let X : Ω→ (0,∞) be a continuous random variable and let q1 (x) = eλHa,b(x)

and q2 (x) = q1 (x) [1− (G(x))a] for x ∈ (0,∞) . Then, pdf of X is (1.5) if and only if the function
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η defined in Theorem 9.1 has the form

η (x) =
b

b+1
[1− (G(x))a] , x > 0. (9.1)

Proof. Proof. Let X have pdf (1.5) , then

(1−F (x))E [q2 (X) | X ≥ x] =
λb

(b+1)
(
1− e−λ

) [1− (G(x))a]
b+1

, x > 0 ,

and

(1−F (x))E [q1 (X) | X ≥ x] =
λ(

1− e−λ
) [1− (G(x))a]

b
, x > 0,

and

η (x)q1 (x)−q2 (x) =−
1

b+1
q1 (x) [1− (G(x))a]< 0 f or x > 0.

Conversely, if η (x) is given by (9.1) , then

s′ (x) =
η ′ (x)q1 (x)

η (x)q1 (x)−q2 (x)
=

abg(x)(G(x))a−1

[1− (G(x))a]
,

from which we obtain

s(x) =− log
{
[1− (G(x))a]

b
}

, x > 0 .

Now, in view of Theorem 9.1, X has cdf (1.4) and pdf (1.5) .

Corollary 9.1. Let X : Ω→ (0,∞) be a continuous random variable and let q1 be as in Proposition

9.1. Then, pdf of X is (1.5) if and only if there exist function q2 and η defined in Theorem 9.1

satisfying the following differential equation

s′ (x) =
η ′ (x)q1 (x)

η (x)q1 (x)−q2 (x)
=

abg(x)(G(x))a−1

[1− (G(x))a]
, x > 0. (9.2)

Remark 9.1. (a) The general solution of the differential equation (9.2) is

η (x) = [1− (G(x))a]
−b
[
−
∫

q2 (x)abg(x)(G(x))a−1 [1− (G(x))a]
b−1 e−λHa,b(x)dx+D

]
,

for x > 0 , where D is a constant. One set of function (q1,q2,η) satisfying the above equation is

given in Proposition 9.1 for D = 0.

(b) Clearly there are other triplet of functions (q1,q2,η) satisfying the conditions of Theorem

9.1. We presented one such pair in Proposition 9.1.
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10. Order Statistics

Order statistics make their appearance in many areas of statistical theory and practice. The density

fi:n(x) of the ith order statistic, for i = 1, . . . ,n, from independent and identically distributed random

variables X1, . . . ,Xn from the Kw-GP distribution is given by

fi:n(x) =
1

B(i,n− i+1)
f (x)

n−i

∑
r=0

(−1)r
(

n− i
r

)
F(x)r+i−1.

We can write from equations (1.4) and (1.5)

fi:n(x) =
1

B(i,n− i+1)

n−i

∑
r=0

r+i−1

∑
s=0

(−1)r+s
(

n− i
r

)(
r+ i−1

s

)
×

λ ha,b(x)e−λ (s+1)Ha,b(x)

(1− e−λ )r+1 .

Hence,

fi:n(x) =
n−i

∑
r=0

r+i−1

∑
s=0

pr,s fλ (s+1)(x), (10.1)

where

pr,s =
(−1)r+s[1− e−λ (s+1)]

(s+1)(1− e−λ )r+1 B(i,n− i+1)

and fλ (s+1)(x) is the Kw-GP density function with parameters λ (s+1), a and b. Equation (10.1) is

the main result of this section. It reveals that the pdf of the Kw-GP order statistics is a double linear

combination of Kw-GP density functions. So, several mathematical quantities of the Kw-GP order

statistics (ordinary, incomplete and factorial moments, mgf, mean deviations and several others) can

be obtained from those quantities of the Kw-GP family of distributions.

11. Maximum Likelihood Estimation

We determine the maximum likelihood estimates (MLEs) of the parameters of the Kw-GP distri-

bution from complete samples only. Let x1, . . . ,xn be a random sample of size n from the Kw-

GP(λ ,a,b,ηηη) distribution, where ηηη is a p× 1 vector of unknown parameters in the parent distri-

bution G(x;ηηη). The log-likelihood function for the vector of parameters θ = (λ ,a,b,ηηηT )T can be
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expressed as

l(θ) = n log(λ ab)−n log(1− e−λ )+
n

∑
i=1

log[g(xi;ηηη)]+(a−1)
n

∑
i=1

log[G(xi;ηηη)]

+(b−1)
n

∑
i=1

log[1−G(xi;ηηη)a]−λ

n

∑
i=1
{1− [1−G(xi;ηηη)a]b}. (11.1)

The log-likelihood can be maximized either directly by using the SAS (Proc NLMixed), the

MaxBFGS routine in the matrix programming language Ox (see, Doornik, 2006) or by solving

the nonlinear likelihood equations obtained by differentiating (11.1). The components of the score

vector U(θ) are

Uλ (θ) =
n
λ
− ne−λ

1− e−λ
−

n

∑
i=1
{1− [1−G(xi;ηηη)a]b},

Ua(θ) =
n
a
+

n

∑
i=1

log [G(xi;ηηη)]+(b−1)
n

∑
i=1
−G(xi;ηηη)a log [G(xi;ηηη)]

1−G(xi;ηηη)a −λ

n

∑
i=1

bG(xi;ηηη)a

× [1−G(xi;ηηη)a]
b−1 log [G(xi;ηηη)] ,

Ub(θ) =
n
b
+

n

∑
i=1

log [1−G(xi;ηηη)a]+λ

n

∑
i=1

[1−G(xi;ηηη)a]
b log [1−G(xi;ηηη)a] ,

Uηηη j(θ) =
n

∑
i=0

{
[ġ(xi;ηηη)]η j

g(xi;ηηη)
+(a−1)

[Ġ(xi;ηηη)]η j

G(xi;ηηη)
− (b−1)

aG(xi;ηηη)a−1[Ġ(xi;ηηη)]η j

1−G(xi;ηηη)a

−λ abG(xi;ηηη)a−1[1−G(xi;ηηη)a]b−1[Ġ(xi;ηηη)]η j

}
,

where [ġ(xi;ηηη)]η j =
∂g(xi;ηηη)

∂η j
and [Ġ(xi;ηηη)]η j =

∂G(xi;ηηη)
∂η j

for j = 1, . . . , p. For interval estimation

on the model parameters, we require the observed information matrix J(θ). Let θ̂ be the MLE

of θ . Under standard regular conditions (Cox and Hinkley, 1974) which are fulfilled for the

proposed model whenever the parameters are in the interior of the parameter space, we can

approximate the distribution of
√

n(θ̂ − θ) by the multivariate normal N(p+3)(0,K(θ)−1), where

K(θ) = limn→∞ Jn(θ) is the information matrix and p is the number of parameters of the G distri-

bution. Based on the approximate multivariate normal N(p+3)(0,J(θ̂)−1) distribution of θ̂ , where

J(θ̂) is the observed information matrix evaluated at θ̂ , we can construct approximate confidence

regions for the model parameters. For the general case, there is no closed formula for the estimators

of maximum likelihood. In a practical problem, obtaining the maximum likelihood estimates for a

particular G must be obtained numerically.

Published by Atlantis Press
Copyright: the authors

236



M. W. A. Ramos et al.

12. Application

Here, we present an application of the five parameter Kw-WP distribution to a real data set for

illustrative purposes. This application indicates the flexibility of the new distribution in modeling

positive data. The computations were performed using the package AdequacyModel in R developed

by the authors Cı́cero Dias and Pedro Marinho. The real data set represents the remission times (in

months) of a random sample of 128 bladder cancer patients (Lee and Wang, 2003):

0.08, 2.09, 3.48, 4.87, 6.94, 8.66, 13.11, 23.63, 0.20, 2.23, 3.52, 4.98, 6.97, 9.02, 13.29, 0.40, 2.26,

3.57, 5.06, 7.09, 9.22, 13.80, 25.74, 0.50, 2.46, 3.64, 5.09, 7.26, 9.47, 14.24, 25.82, 0.51, 2.54, 3.70,

5.17, 7.28, 9.74, 14.76, 26.31, 0.81, 2.62, 3.82, 5.32, 7.32, 10.06, 14.77, 32.15, 2.64, 3.88, 5.32,

7.39, 10.34, 14.83, 34.26, 0.90, 2.69, 4.18, 5.34, 7.59, 10.66, 15.96, 36.66, 1.05, 2.69, 4.23, 5.41,

7.62, 10.75, 16.62, 43.01, 1.19, 2.75, 4.26, 5.41, 7.63, 17.12, 46.12, 1.26, 2.83, 4.33, 5.49, 7.66,

11.25, 17.14, 79.05, 1.35, 2.87, 5.62, 7.87, 11.64, 17.36, 1.40, 3.02, 4.34, 5.71, 7.93, 11.79, 18.10,

1.46, 4.40, 5.85, 8.26, 11.98, 19.13, 1.76, 3.25, 4.50, 6.25, 8.37, 12.02, 2.02, 3.31, 4.51, 6.54, 8.53,

12.03, 20.28, 2.02, 3.36, 6.76, 12.07, 21.73, 2.07, 3.36, 6.93, 8.65, 12.63, 22.69.

Table 1 lists the maximum likelihood estimates (and the corresponding standard errors in paren-

theses) of the unknown parameters of the Kw-WP, Kumaraswamy-Weibull (Kw-W), beta Weibull

(BW), exponentiated Weibull (EW) and Weibull (W) models for the remission times data. It is

important to emphasize that the EW model is very popular for the analysis of lifetime data.

Table 1. MLEs (standard errors in parentheses).

Distributions Estimates

Kw-WP (λ , a, b, c, β ) 3.63748 1.84467 2.14003 0.79822 0.03756

(2.58073) (2.76562) (11.12893) (1.06864) (0.11321)

Kw-W (a, b, c, β ) 4.12327 2.94308 0.45855 0.21630

(5.83511) (8.10936) (0.51350) (0.24837)

BW (a, b, c, β ) 2.73456 0.90765 0.66618 0.32174

(1.59435) (1.49643) (0.24362) (0.43221)

EW (a, c, β ) 2.79620 0.65439 0.29890

(1.26290) (0.13459) (0.16875)

W (c, β ) 1.04782 0.10459

(0.06757) (0.00933)

Published by Atlantis Press
Copyright: the authors

237



The Kumaraswamy-G Poisson Family of Distributions

Next, we shall apply formal goodness-of-fit tests in order to verify which distribution fits better to

these data. We consider the Cramér-von Mises (W ∗) and Anderson-Darling (A∗) statistics described

in Chen and Balakrishnan (1995). In general, the smaller the values of these statistics, the better the

fit to the data.

The statistics A∗ and W ∗ for all the models are listed in Table 2 for the remission time data.

First, the proposed Kw-WP model fits these data better than the other models according to the

statistics A∗ and W ∗. The Kw-WP model may be an interesting alternative to other models available

in the literature for modeling positive real data. The QQ-plots for the Kw-WP, Kw-W, EW and W

distributions are displayed in Figure 4. Based on these plots, the Kw-WP model outperforms the

other models.

Table 2. Statistics A∗ and W ∗.

Distributions A∗ W∗

Kw-WP 0.14942 0.02250

Kw-W 0.27317 0.04147

BW 0.28824 0.04362

EW 0.28847 0.04367

W 0.78648 0.13137
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Fig. 4. QQ-plots.
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13. Conclusions

We propose a new family of continuous distributions called the Kumaraswamy-G Poisson (“Kw-

GP” for short) family of distributions. Based on this generalization, several new models can be

generated by considering special distributions for G. We demonstrate that the probability density

function (pdf) of any Kw-GP distribution can be expressed as a linear combination of exponentiated-

G density functions. This result allows us to derive general explicit expressions for several measures

of the Kw-GP distributions such as the ordinary, incomplete moments and generating function. Fur-

ther, we demonstrate that the pdf of the Kw-GP order statistics can be expressed as a linear com-

bination of Kw-GP density functions. We discuss maximum likelihood estimation and inference on

the model parameters based on Cramér-von Mises and Anderson-Darling statistics. An application

of the new class of distributions to a real data set demonstrates the potentiality of the new family.

We hope this generalization may attract several applications in statistics.
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[9] Rényi, A. (1961). On measures of entropy and information, In: Proceedings of the 4th Berkeley Sym-

posium on Mathematical Statistics and Probability, Volume I, pp. 547-561, University of California

Press, Berkeley.

[10] Shannon, C.E. (1951). Prediction and entropy of printed English. The Bell System Technical Journal,

30, 50-64.

[11] Wolfram, S. (2003). The Mathematica Book. 5th ed. Cambridge University Press, London.

[12] Zografos, K. and Balakrishnan, N. (2009). On families of beta- and generalized gamma-generated

distributions and associated inference. Statistical Methodology, 6, 344-362.

Published by Atlantis Press
Copyright: the authors

239


