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Record is used to reduce the time and cost of running experiments (Doostparast and Balakrishnan, 2010). It is
important to check the adequacy of models upon which inferences or actions are based (Lawless, 2003, Chapter
10, p. 465). In the area of goodness of fit based on record data, there are a few works. Smith (1988) proposed
a form of residual for testing some parametric models. But in most cases, the variation inherent in graphical
summaries is substantial, even when the data are generated by assumed model, and the eye can not always
determine whether features in a plot are within the bounds of natural random variation. Consequently, formal
hypothesis tests are an important part of model checking (Lawless, 2003).
In this paper, Kolmogorov-Smirnov and Cramer-von Mises type goodness of fit tests for record data are pro-
posed. Also a new weighted goodness of fit test is suggested. A Monte-Carlo simulation study is conducted
to derive the percentiles of the statistics proposed. Finally, some real data sets are given to investigate results
obtained.
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1. Introduction

In reliability, we are concerned primarily with test data in which lifetimes of items that fail dur-
ing the course of the test are recorded or with variables related in some way to item lifetimes. If
the actual lifetime of every item in the sample is recorded, the data are complete data. To obtain
complete data, it is necessary to continue the experiment until the last item on test or in service has
failed. In cases where even a few items in the sample may have very long lifetimes, experiment can
go on for a very long period of time and, in fact, well beyond the point at which the results may no
longer be of any interest or use. In such situations, it may be desirable to terminate the study prior
to failure of all items under test. When observation is discontinued prior to all items having failed,
we obtain the so-called censored data. There are a variety of forms of censored data that arise in
practice; See, for example, Balakrishnan and Cohen [2] and Cohen [4].

A form of censored data that is often encountered in applications is the so-called record data.
As pointed out by Gulati and Padgett [7], often, in industrial testing, meteorological data, and some
other situations, measurements may be made sequentially and only values smaller (or larger) than
all previous ones are recorded. Such data may be represented by (r,k) := (r1,k1,r2,k2, · · · ,rm,km),
where ri is the i-th record value meaning new minimum (or maximum) and ki is the number of
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trials following the observation of ri that are needed to obtain a new record value (or to exhaust the
available observation). There are two sampling schemes for generating such a record-breaking data:

• (Inverse sampling scheme) Items are presented sequentially and sampling is terminated
when the m-th minimum is observed. In this case, the total number of items sampled is a
random number, and Km is defined to be one for convenience;

• (Random sampling scheme) A random sample Y1, · · · ,Yn is examined sequentially and suc-
cessive minimum values are recorded. In this setting, we have N(n), the number of records
obtained, to be random and, given a value of m, we have in this case ∑m

i=1 Ki = n.

A random variable X is said to have an exponential distribution, denoted by X ∼ Exp(σ), if its
cumulative distribution function (cdf) is

F(x;σ) = 1− exp
{
−
( x

σ

)}
, x ≥ 0, σ > 0, (1.1)

and the probability density function (pdf) is

f (x;σ) =
1
σ

exp
{
−
( x

σ

)}
, x ≥ 0, σ > 0. (1.2)

The exponential distribution is commonly used in many applied problems. Such a exponential dis-
tribution is a natural model while studying a variable that can take on only positive values such as
lifetime of units. In some situations, the Weibull distribution is more suitable than the exponential
distributions (Nelson, 1985). The Weibull cdf, denoted by W (α,σ), is

F(x;α,σ) = 1− exp
{
−
( x

σ

)α}
, α > 0, σ > 0, (1.3)

and hence with pdf

f (x;α,σ) =
αxα−1

σα exp
{
−
( x

σ

)α}
, α > 0, σ > 0. (1.4)

The scale parameter σ is called the characteristic life because it is always 63.2-th percentile. It
determines the spread and has the same units as failure times, for example hours, months, cycles,
and so forth. Parameter α is a unitless pure number and determines the shape of the distribution. For
α = 1, the Weibull distribution is the exponential distribution. The Weibull distribution appears very
frequent in practical problems when we observe data representing minimal values. For example, the
life of a capacitor is determined by shortest-lived portion of dielectric. For many parent populations
with limited left tail, the limit of the minimum of independent samples converges to a Weibull
distribution (Lawless [9]). Researchers often like to make parametric assumptions on the underlying
distribution. With this in mind, estimation of the mean of an exponential distribution based on record
data has been treated by Samaniego and Whitaker [11] and Doostparast [5]. Hoinkes and Padgett [8]
obtained the ML estimators from record-breaking data in this model.

As pointed out by Lawless ( [9], Chapter 10, p. 465), it is important to check the adequacy of
models upon which inferences or actions are based. In the area of goodness of fit based on record
data, there is a lack of published literature. But, there are a few works in this direction. However,
informal methods of model checking emphasize graphical procedures such as probability and resid-
ual plots, Smith [12] proposed a form of residual for testing some parametric models. But in most
cases, the variation inherent in graphical summaries is substantial, even when the data are generated
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by assumed model, and the eye can not always determine whether features in a plot are within the
bounds of natural random variation. Consequently, formal hypothesis tests are an important part of
model checking.

Motivated by this, the aim of this paper is to provide some methods for model checking on the
basis of records. Specifically, suppose that the record data {R1,K1, · · · ,Rm,Km} are coming from a
population with parent cdf F(.). We consider testing

H0 : F(x) = 1− exp
{
−
( x

σ

)α}
, ∀ x ∈ (0,+∞). (1.5)

where α and σ may be unknown positive constants. In other word, is the weibull model adequate to
fit the data? Therefore, the rest of this article is organized as follows. Since weibull model has a wide
variety application, in Section 2, maximum likelihood estimate (MLE) of the unknown parameters
in Weibull model are obtained. In Section 3, explicit expression for Kolmogorov-Smirnov (K-S) and
Cramer-Misses (C-M) goodness of fit tests is derived and we proposed a new modified goodness of
fit test which is more suitable than the K-S and C-M statistics for records. Critical values of these
statistics are obtained by a simulation study. In Section 4, Exponential model is considered and
goodness of fit test for exponential model against the alternative weibull model is obtained. Finally,
some numerical examples are given to investigate results obtained.

2. Fitting a Weibull model

It can be shown that, the likelihood function for the two sampling schemes is given by

L(θ)≡
m

∏
i=1

f (ri){1−F(ri)}ki−1 , 0 < rm < · · ·< r2 < r1. (2.1)

Let us assume that the sequence {R1,K1, · · · ,Rm,Km} are coming from W (α,σ)-model. The corre-
sponding likelihood function under either random or inversely sampling is obtained as

L(θ)≡ αm

σ mα

{
m

∏
i=1

ri

}α−1

exp

{
− 1

σα

m

∑
i=1

kirα
i

}
. (2.2)

After taking logarithm, we have

l(θ)≡ m log(α)−mα log(σ)+(α −1)
m

∑
i=1

log(ri)−
1

σα

m

∑
i=1

kirα
i . (2.3)

Through this paper ”log” denotes natural logarithm. One can easily show that, the maximum of
(2.3) for m ≥ 2, by taking derivatives, is obtained from solving the equations

σ =

{
1
m

m

∑
i=1

kirα
i

}1/α

, (2.4)

and

h(α) =
1
m

m

∑
i=1

lnri, (2.5)
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where

h(α) =
∑m

i=1 kirα
i lnri

∑m
i=1 kirα

i
− 1

α
.

The equation (2.5) cannot be solved explicitly and hence the MLEs must be found by numerical
methods. These equations is similar with equations (6.2) and (6.3) of Lehmann and Casella (1998,
Ch. 6, p. 468). Hence, one can show that these equations have a unique solution.

3. GOF for weibull model

GOF tests can be based on the approaches of comparison of parametric estimates with nonparamet-
ric counterparts. Two well known examples are the Kolmogorov-Smirnov (K-S) and the Cramer-von
Mises (C-M) statistics defined by

D̂n = sup
−∞<x<+∞

|F̂(x)−F0(x)|, (3.1)

and

Ŵ 2
n = n

∫ +∞

−∞

{
F̂(x)−F0(x)

}2 dF0(x), (3.2)

respectively, where F0(x) is the hypothesized model while F̂(x) is the corresponding nonparametric
maximum likelihood estimation (NPMLE). On the basis of record data, arising from a random
sample with size n, Samaniego and Whitaker [11] obtained NPMLE of survival function F̄(x) :=
1−F(x) as

ˆ̄F(x) = ∏
i:r(i)≤x

∑m
j=i k( j)−1

∑m
j=i k( j)

, (3.3)

where r(0) ≡ 0 and r(1) < r(2) < · · ·< r(m) are the observed record values, ordered from smallest to
largest and {k(i)} are the induced order statistics corresponding to the ordered record values {r(i)}
or k(i) = km−i+1, i = 1,2, · · · ,m. As mentioned by Samaniego and Whitaker [11], NPMLE in (3.3)
will perform poorly when estimating the right tail of the actual distribution, thus we suggest a new
GOF statistic as follows

DSn = n
∫ +∞

0

(
ˆ̄F(x)− F̄0(x)

)2 1
F0(x)

dF0(x). (3.4)

The basic idea for DSn is similar with Anderson-Darling statistic and is to measure the distance
between F̂(x) and F0(x) in left tail region of Fn(x) better than C-M statistic in (3.2). One may notice
that, on the basis of record data, the statistics Dn, W 2

n and DSn are modified so that the supreme
and integral are over the range y ≤ r1. Sufficiently large values of Dn, W 2

n or DSn provide evidence
against the hypothesized model. To calculate the test statistics, the following Proposition is helpful.
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Proposition 3.1. Let R1,K1, · · · ,Rm,Km be record data arising from a random sample with size n.
Then the statistics Dn, W 2

n and DSn are simplified as

Dn = max
1≤i≤n

{
max

{
Φ̂1 · · ·Φ̂i−1 − ˆ̄F0(r(i)), ˆ̄F0(r(i))− Φ̂1 · · ·Φ̂i

}}
, (3.5)

W 2
n =

n
3

m+1

∑
i=1

{[
Φ̂1 · · ·Φ̂i−1 − ˆ̄F0(r(i))

]3
−
[
Φ̂1 · · ·Φ̂i−1 − ˆ̄F0(r(i−1))

]3
}
, (3.6)

and

DSn = n

[
m+1

∑
i=1

{[
Φ̂1 · · ·Φ̂i−1 −1

]2
ln F̂0(r(i))−

[
Φ̂1 · · ·Φ̂i−1 −1

]2
ln F̂0(r(i−1))

}
,

+2
m+1

∑
i=1

{[
Φ̂1 · · ·Φ̂i−1 −1

]
F̂0(r(i))−

[
Φ̂1 · · ·Φ̂i−1 −1

]
F̂0(r(i−1))

}
+

1
2

]
, (3.7)

respectively, where r(0) ≡ 0, xm+1 ≡+∞ and for i = 1, Φ̂1 · · ·Φ̂i−1 = 1 and

Φ̂i =
∑m

j=i k( j)−1

∑m
j=i k( j)

, 1 ≤ i ≤ m.

Proof. Proof of (3.5) is clear. For (3.6), we have

W 2
n = n

∫ +∞

0

{
F̂n(y)−F0(y)

}2 dF0(y)

= n
∫ +∞

0

{
ˆ̄Fn(y)− F̄0(y)

}2
dF0(y)

= n
m+1

∑
i=1

∫ r(i)

r(i−1)

{
ˆ̄Fn(y)− F̄0(y)

}2
dF0(y)

= n
m+1

∑
i=1

∫ r(i)

r(i−1)

{
Φ̂1 · · ·Φ̂i−1 − F̄0(y)

}2
dF0(y)

= n
m+1

∑
i=1

∫ F0(r(i))

F0(r(i−1))

{
Φ̂1 · · ·Φ̂i−1 −1+u

}2
du

=
n
3

m+1

∑
i=1

[{
Φ̂1 · · ·Φ̂i−1 −1+ F̂0(r(i))

}3 −
{

Φ̂1 · · ·Φ̂i−1 −1+ F̂0(r(i−1))
}3
]
.

Similarly, one can show (3.7) and desired result follows. 2

Proposition 3.2. Assuming H0 : F0(y) = 1− exp{−(x/σ)α} is true. Conditionally on {N(n) ≥ 2},
the distribution of Dn, W 2

n and DSn, on the basis of record data do not depend on F0(y).

Proof. Suppose {N(n) ≥ 2}. Let R′
i

D≡ (Ri/σ)α . Thus, R′
1,K1, · · · ,R′

m,Km are coming from a ran-
dom sample with common distribution function W (1,1). The ML estimates on the basis of
R′

1,K1, · · · ,R′
m,Km, denoted by α̂ ′ and σ̂ ′, are obtained by solving (2.4) and (2.5) replacing ri with
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r′i. One can easily verify that α̂ = αα̂ ′. This implies that

σ̂ =

{
1
m

m

∑
i=1

KiRα̂
i

} 1
α̂

=

{
1
m

m

∑
i=1

Ki(σR′1/α
i )α̂

} 1
α̂

= σ

{
1
m

m

∑
i=1

Ki(R′
i)

α̂/α

} 1
α̂

= σ

{
1
m

m

∑
i=1

Ki(R′
i)

α̂ ′

} 1
α̂ ′α

= σ
{

σ̂ ′}1/α
.

Hence, the estimate of weibull distribution function is obtained as

F̂0(x;α,σ) = F0(x; α̂, σ̂)

= 1− exp
{
−
( x

σ̂

)α̂
}

= 1− exp

−

(
x

σ {σ̂ ′}1/α

)αα̂ ′
= 1− exp

{
−
([ x

σ

]α 1
σ̂ ′

)α̂ ′}

= 1− exp
{
−
( y

σ̂ ′

)α̂ ′}
= F̂⋆(y;α,σ). (3.8)

Similarly to Liao and Shimokawa [10], this equation indicates that F̂0(x;α,σ) is independent of the
”true values” of the parameters α and σ . This implies that Dn, W 2

n and DSn is not depend on the
”true value” of α and σ when the parameters are estimated by the MLEs. The desired result follows.
2

Proposition 3.2 clarifies that the distribution of Dn, W 2
n and DSn, on the basis of record data,

can be calculated via simulation without loss of generality by using a weibull distribution with
α = σ = 1. Let Dn,γ , W 2

n,γ and DSn,γ denotes the γ-th quantile of the distribution of Dn, W 2
n and

DSn, on the basis of record data, respectively. These tests rejects the null hypothesis H0 : F(x) =
1−exp{−(x/σ)α} of size γ , if the used GOF statistic exceeds its corresponding (1−γ)-th quantile.
Table 1 presents simulated critical values provided by a Monte-Carlo method. For this task, MC
simulation provides the total sets of M = 100,000 record samples and the values of Dn, W 2

n and
DSn are calculated and increasingly ordered. Then the critical values of Dn, W 2

n and DSn for some
significant level were calculated.
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Table 1. Percentiles of Dn, W 2
n and DSn for GOF of weibull model.

n γ
0.01 0.025 0.05 0.1 0.5 0.90 0.95 0.975 0.99

Dn 0.1758 0.2008 0.2253 0.2584 0.4445 0.8093 0.8627 0.8846 0.8976
5 W2

n 0.0108 0.0166 0.0252 0.0414 0.2749 0.8842 1.0706 1.1545 1.2063
DSn 0.3819 0.4546 0.4963 0.5499 1.0480 2.6889 3.8012 4.4511 4.9176

Dn 0.1508 0.1646 0.1877 0.2372 0.5296 0.8854 0.9170 0.9361 0.9494
10 W2

n 0.0786 0.1354 0.2124 0.3524 0.9664 2.3140 2.5707 2.7348 2.8530
DSn 0.9747 1.0608 1.1891 1.4090 2.4504 8.9519 11.5462 13.7890 15.8577

Dn 0.0858 0.1047 0.1394 0.2109 0.6430 0.9322 0.9502 0.9611 0.9704
20 W2

n 0.7155 0.9951 1.1811 1.3369 3.1507 5.4022 5.7196 5.9185 6.0919
DSn 2.7572 3.1844 3.5657 4.0448 8.1438 26.5699 31.9874 36.4863 41.5800

Dn 0.0451 0.0676 0.1067 0.1863 0.7763 0.9663 0.9743 0.9797 0.9846
50 W2

n 3.4983 3.6557 3.7911 3.9573 11.4929 15.0385 15.4166 15.6718 15.9096
DSn 10.9018 11.6437 12.3496 13.4346 38.7320 98.0011 110.7805 121.8708 135.2813

4. GOF for exponential model

As mentioned earlier, the model W (α,σ) reduces to Exp(σ) model when α = 1. Therefore, in this
case, testing the hypothesis H0 : X ∼ Exp(σ) against the alternative H1 : X ∼W (α,σ) is equivalent
to testing H0 : α = 1 against the alternative H1 : α ̸= 1. We could not find a UMP test of size γ
(0 < γ < 1) for this hypothesis testing problem. We leave it as an open problem. Therefore, we used
the generalized likelihood ratio (GLR) procedure in order to test these hypotheses. From (1.3), (1.4)
and (2.2), likelihood ratio statistic for testing H0 : α = 1 against the alternative H1 : α ̸= 1 is given
by

Λ =
supH0

L
supH1

L

=
1

σ̂ m
0

exp

{
− 1

σ̂0

m

∑
i=1

kiri

} α̂m

σ̂ mα̂

{
m

∏
i=1

ri

}α̂−1

exp

{
− 1

σ̂α

m

∑
i=1

kirα̂
i

}−1

=

(
m

∑m
i=1 kiri

)m

exp{−m}

 α̂m

σ̂mα̂

{
m

∏
i=1

ri

}α̂−1

exp{−m}

−1

=

(
m

∑m
i=1 kiri

)m
 α̂m

σ̂ mα̂

{
m

∏
i=1

ri

}α̂−1
−1

=

(
m

∑m
i=1 kiri

)m

σ̂ mα̂

α̂m

{
m

∏
i=1

ri

}α̂−1
−1

=

(
∑m

i=1 kirα̂
i

∑m
i=1 kiri

)m
α̂m

{
m

∏
i=1

ri

}α̂−1
−1

(4.1)

where α̂ is obtained by solving equation (2.5) and is the maximum likelihood estimation of α under
H1 while σ̂0 is the ML estimate of σ under H0 and is given by ∑m

i=1 KiRi/n.

Published by Atlantis Press
Copyright: the authors

295



Mahdi Doostparast

Table 2. Times (in minutes) between 48 consecutive calls.

1.34 0.14 0.33 1.68 1.86 1.31 0.83 0.33
2.20 0.62 3.20 1.38 0.96 0.28 0.44 0.59
0.25 0.51 1.61 1.85 0.47 0.41 1.46 0.09
2.18 0.07 0.02 0.64 0.28 0.68 1.07 3.25
0.59 2.39 0.27 0.34 2.18 0.41 1.08 0.57
0.35 0.69 0.25 0.57 1.90 0.56 0.09 0.28

Table 3. Record data arising from times (in minutes) between 48 consecutive calls.

i 1 2 3 4 5
Ri 1.34 0.14 0.09 0.07 0.02
Ki 1 22 2 1 22

Proposition 4.1. When σ is unknown, critical region of the GLR test of level γ for testing H0 : α = 1
against the alternative H1 : α ̸= 1 is given by

C =

(r,k) :
(

∑m
i=1 kirα̂

i

∑m
i=1 kiri

)m
α̂m

{
m

∏
i=1

ri

}α̂−1
−1

<C⋆

 , (4.2)

α̂ is the maximum likelihood estimation of α under H1 and C⋆ is obtained from the size restriction

γ = Pα=1

(∑m
i=1 kirα̂

i

∑m
i=1 kiri

)m
α̂m

{
m

∏
i=1

ri

}α̂−1
−1

<C⋆

 . (4.3)

Under H0, it can be shown that −2lnΛ has an asymptotic chi-square distribution with one degree
of freedom when n, sample size, goes to infinity, thus C⋆ ≈ exp

{
−1

2 χ1,1−γ
}

, where χv,p is the p-th
quantile of a chi-square distribution with v degrees of freedom.

5. Illustrative examples

Example 1

Table 2 shows the times between 48 (in minutes) consecutive telephone calls to a company’s switch-
board, as presented by Castillo et. al. [3]. Assuming that the times between the consecutive tele-
phone calls follow the exponential distribution Exp(σ), Castillo et. al. [3] obtained the MLE of
σ based on the complete data as σ̂C = 0.934. The corresponding record data, obtained from these
complete data, are presented in Table 3. By assuming Exp(σ)-model, the MLE of σ on the basis of
record data is obtained to be σ̂0 = 1.022 while by assuming W (α,σ)-model, from (2.4) and (2.5),
MLEs of α and σ is obtained as α̂ = 1.1815 and σ̂ = 0.8181, respectively. To calculate the GOF
statistics, Table 4 is useful. From Table 4, we conclude that

Dn = 0.6979, W 2
n =,5.5140 DSn = 8.8604
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Table 4. GOF from times between 48 consecutive calls.

i ri ki r(i) k(i) Φ̂i F̄n(r(i)) = Φ̂1 · · ·Φ̂i
ˆ̄F0(r(i)) = exp{−(r(i)/σ̂)α̂}

1 1.34 1 0.02 22 48−1
48

47
48 = 0.9792 0.9876

2 0.14 22 0.07 1 26−1
26

47
48 ×

25
26 = 0.9415 0.9467

3 0.09 2 0.09 2 25−1
25

47
48 ×

25
26 ×

24
25 = 0.9038 0.9290

4 0.07 1 0.14 22 23−1
23

47
48 ×

25
26 ×

24
25 ×

22
23 = 0.8646 0.8832

5 0.02 22 1.34 1 1−1
1 0 0.1667

Fig. 1. Contour plot of likelihood function (2.2) on the basis of data in Table 3.

Letting γ = 0.05, from Table 1, three approaches lead to accept Weibull model for this data. For
testing exponential model against the alternative Weibull model, GLR statistics is obtained as

Λ =

(
∑m

i=1 kirα̂
i

∑m
i=1 kiri

)m
α̂m

{
m

∏
i=1

ri

}α̂−1
−1

= 1.4765,

or, −2lnΛ = 0.3896630654 which gives the p−value = 0.5324766591. This supports exponential
assumption by Castillo et. al. [3]. A graph of likelihood function is given in Figure 1.

Example 2

Samaniego and Whitaker [11] presented record data arising from successive failure times of air
conditioning units in Boeing aircraft on plan 7914 consists of n = 24 failure times. The data is
given in Table 5. They approximated these data by Exp(σ)-model and estimated the mean life σ as
σ̂0 = 70. Under W (α,σ)-model, the MLEs of α and σ are obtained as

α̂ = 1.598743046, σ̂ = 51.42746441,
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Table 5. Successive minima, plane 7914.

i 1 2 3 4
Ri 50 44 22 3
Ki 1 3 2 18

Fig. 2. Contour plot of likelihood function (2.2) on the basis of data in Table 5

Table 6. Simulated record data from W (α = 4,σ = 1).

i 1 2 3 4
Ri 0.879 0.765 0.735 0.220
Ki 3 2 2 23

respectively. Therefore, −2lnΛ = 1.580279376 which gives the p− value = 0.2087204561. This
supports exponential assumption by Samaniego and Whitaker [11]. A graph of likelihood function
is given in Figure 2.

Example 3

Samaniego and Whitaker [11] simulated a random sample with size n = 30 from W (α = 4,σ = 1)-
model and record data arising from this sample is presented in Table 6. Assuming Exp(σ)-model,
MLE of the mean life σ is σ̂0 = 2.67425000. By assuming W (α,σ)-model, the MLEs of α and σ
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Goodness-of-fit tests on the basis of records

Fig. 3. Contour plot of likelihood function (2.2) on the basis of data in Table 6

are obtained as

α̂ = 3.316071956, σ̂ = 0.9728468503,

respectively. Therefore, −2lnΛ = 7.911804336 which gives the p− value = 0.0049113232. This
supports departure from exponential assumption. A graph of likelihood function is given in Figure
3.

6. Concluding Remarks

In this paper, Kolmogorov-Smirnov and Cramer-von Misses type goodness of fit tests as well as
a new weighted statistics for record data were proposed. These statistics were used to goodness
of fit test for Weibull model. We suggest the following discipline to analyze record data: First
step is to test weibull model using the proposed GOF tests in Section 3. Were it accepted, GLR
test in Section 4 for the exponentially model. Use the statistical procedures for record data arising
from exponential model provided that the exponential model were accepted. See Samaniego and
Whitaker [11], Arnold et. al. [1], Doostparast [5], Doostparast and Balakrishnan [6]. If the expo-
nentially was rejected, one can use the results of Hoinkes and Padgett [8]. If the weibull model was
rejected, one can use the non-parametric results of Samaniego and Whitaker [11].

Following Samaniego and Whitaker [11], one can consider the problem when the available
data are arising from L sequence of random variables. More precisely, assume that L independent
samples

Yi1,Yi2, · · · ,Yi,ni , 1 ≤ i ≤ L,
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each of size ni, are obtained sequentially from F . The resulting records are Ri1,Ki1, · · · , Rimi ,Kimi for
i = 1,2, · · · ,L where Kimi = ni −∑mi−1

j=1 Ki j. Similarly, the NPMLE of the survival function at point
t is obtained as

ˆ̄F(t) = ∏
i:r(i)≤t

∑m⋆

j=i k( j)−1

∑m⋆

j=i k( j)
, (6.1)

where m⋆ = ∑L
i=1 mi, {r(i), i = 1,2, · · · ,m⋆} be the order observed record values in the L samples

combined and {k(i), i = 1,2, · · · ,m⋆} the induced order statistics for the associated ki j. To carry out
the impact of L on the power of the GOF tests, one can conduct a simulation study.
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