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We consider the problem of nonparametric estimation of the conditional hazard function for functional mixing
data. More precisely, given a strictly stationary random variables Zi = (Xi, Yi)i∈N, we investigate a kernel
estimate of the conditional hazard function of univariate response variable Yi given the functional variable Xi.
The principal aim of this paper is to give the mean squared convergence rate and to prove the asymptotic
normality of the proposed estimator.
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1. Introduction

The statistical problems involved in the modelization of functional data have received an increasing
interest in the literature. The infatuation for this topic is linked with many applications areas in
which the data are collected in the functional order. Under this supposition, the statistical analysis
focuses on a framework of infinite dimension for the data under study. This field of modern statistics
has received much attention in the last 20 years, and it has been popularised in the book of Ramsay
and Silverman [23]. This type of data appears in many fields of applied statistics: environmetrics [8],
chemometrics [2], meteorological sciences [3], etc..
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In this paper, we are interested in the nonparametric estimation of the conditional hazard func-
tion when the covariates are of functional nature.

The nonparametric estimation of the hazard and/or the conditional hazard function is quite
important in a variety of fields including medicine, reliability, survival analysis or in seismology.
The literature on this model in multivariate statistics is abundant. Historically, the hazard estimate
was introduced by Watson and Leadbetter [30], since, several results have been added, see for exam-
ple, Roussas [26] (for previous works).

From a theoretical point of view, a sample of functional data can be involved in many different
statistical problems, such as for example: classification and principal components analysis (PCA)
[5,6] or longitudinal studies, regression and prediction [2, 7].

The recent monograph by Ferraty and Vieu [13] summaries many of their contributions to the
non-parametric estimation with functional data; among other properties, consistency of the con-
ditional density, conditional distribution and regression estimates are established in the i.i.d. case
as well as under dependence conditions (strong mixing). Almost complete rates of convergence
are also obtained, and the different techniques are applied to several examples of functional data
samples. Related work can be seen in the paper of Masry [19], where the asymptotic normality
of the functional non-parametric regression estimate is proven, considering strong mixing depen-
dence conditions for the sample data. For automatic smoothing parameter selection in the regression
setting, see Rachdi and Vieu [22].

The literature is strictly not limited in the case where the data is of functional nature (a curve).
The first result in this context, was given by Ferraty et al . [12]. They established the almost complete
convergence of the kernel estimate of the conditional hazard function in the i.i.d. case and under α-
mixing condition . Recently, Rabhi et al. [21] studied the mean quadratic convergence in the i.i.d.
case of this estimate. More recently Mahiddine et al. [18] give the uniform version of the almost
complete convergence rate in the i.i.d. case.

The estimation of the hazard function is a problem of considerable interest, especially to inven-
tory theorists, medical researchers, logistics planners, reliability engineers and seismologists. The
non-parametric estimation of the hazard function has been extensively discussed in the literature.
Beginning with Watson and Leadbetter [30], there are many papers on these topics: Ahmad [1],
Singpurwalla andWong [27], etc.We can cite Quintela [20] for a survey.

When hazard rate estimation is performed with multiple variables, the result is an estimate of
the conditional hazard rate for the first variable, given the levels of the remaining variables. Many
references, practical examples and simulations in the case of non parametric estimation using local
linear approximations can be found in Spierdijk [28]. The main aim of this paper, is to study, under
general conditions, the asymptotic proprieties of the functional data kernel estimate of the condi-
tional hazard function introduced by Ferraty et al. [12]. More precisely, we treat the L2-convergence
rate by giving the exact expression involved in the leading terms of the quadratic error. In addition,
we establish the asymptotic normality of the construct estimator. We point out that our asymptotic
results are useful in some statistical problems such as the choice of the smoothing parameters, the
determination of confidence intervals and in risk analysis. The present work extended to dependent
case the result of Rabhi et al. [21] given in i.i.d. case functional. We note that, one of the main diffi-
culty, when dealing with functional variables, relies on the difficulty for choosing some appropriate
measure of reference in infinite dimensional spaces. The main feature of our approach is to build
estimates and to derive their asymptotic properties without any notion of density for the functional
variable X . This approach allows us to avoid the use of a reference measure in such functional
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spaces. In each of the above described sections, we will give general asymptotic results without
assuming existence of such a density, and each of these results will be discussed in relation with
earlier literature existing in the usual finite dimensional case.

Our paper presents some asymptotic properties related with the non parametric estimation of
the conditional hazard function. In a functional data setting, the conditioning variable is allowed
to take its values in some abstract semi-metric space. In this case, Ferraty et al. [29] define non-
parametric estimators of the conditional density and the conditional distribution. They give the rates
of convergence (in an almost complete sense) to the corresponding functions, in an a dependence
(α-mixing) context. In Rabhi et al. [21], the same properties are shown in an i.i.d. context in the
data sample. We extend their results to dependent case by calculating the bias and variance of these
estimates, and establishing their asymptotic normality, considering a particular type of kernel for
the functional part of the estimates. Because the hazard function estimator is naturally constructed
using these two last estimators, the same type of properties is easily derived for it. Our results are
valid in a real (one- and multi-dimensional) context.

The paper is organized as follows: the next section we present our model. Section 3 is dedicated
to fixing notations and hypotheses. We state our main results in Section 4. The Section 5 is devoted
to some discuss on the applicability of our asymptotic result in some statistical problems such as the
choice of the smoothing parameters, the determination of confidence intervals and in seismology
analysis.

2. The model

Consider Zi = (Xi,Yi), i ∈N be a F ×R-valued measurable strictly stationary process, defined on a
probability space (Ω,A ,P), where (F ,d) is a semi-metric space.

In the following x will be a fixed point in F and Nx will denote a fixed neighborhood of x.
We assume that the regular version of the conditional probability of Y given X exists. Moreover,
we suppose that, for all z ∈ Nx the conditional distribution function of Y given X = z, Fz(·) , is 3-
times continuously differentiable and we denote by f z its conditional density with respect to (w.r.t.)
Lebesgue’s measure over R. In this paper, we consider the problem of the nonparametric estimation
of the conditional hazard function defined, for all y ∈ R such that Fx(y)< 1, by

hx(y) =
f x(y)

1−Fx(y)
.

In our spatial context, we estimate this function by

ĥx(y) =
f̂ x(y)

1− F̂x(y)

where

F̂x(y) =
∑

n
i=1 K(h−1

K d(x,Xi))H(h−1
H (y−Yi))

∑
n
i=1 K(h−1

K d(x,Xi))
, ∀y ∈ R

and

f̂ x(y) =
h−1

H ∑
n
i=1 K(h−1

K d(x,Xi))H ′(h−1
H (y−Yi))

∑
n
i=1 K(h−1

K d(x,Xi))
, ∀y ∈ R
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We can write an estimator of the first derivative of the hazard function through the first derivative
of the estimator.

It is therefore natural to try to construct an estimator of the derivative of the function hX on the
basis of these ideas. To estimate the conditional distribution function and the conditional density
function in the presence of functional conditional random variable X .

The kernel estimator of the derivative of the function conditional random functional h
′X can

therefore be constructed as follows:

ĥ′
X
(y) =

f̂ ′
X
(y)

1− F̂Y (y)
+(ĥX(y))2, (2.1)

the estimator of the derivative of the conditional density is given in the following formula:

f̂ ′
X
(y) =

n

∑
i=1

h−2
H K(h−1

K d(X ,Xi))H ′′(h−1
H (y−Yi))

n

∑
i=1

K(h−1
K d(X ,Xi))

(2.2)

Later, we need assumptions on the parameters of the estimator, ie on K,H,H ′,hH andhK are little
restrictive. Indeed, on one hand, they are not specific to the problem estimate of hX (but inherent
problems of FX , f X and f ′X estimation), and secondly they consist with the assumptions usually
made under functional variables, with K is the kernel, H is a given continuously differentiable
distribution function, hK = hK,n (resp. hH = hH,n) is a sequence of positive real numbers and H ′ is
the derivative of H. Furthermore, the estimator ĥ′

x
(y) can we written as

ĥx(y) =
f̂ ′

x
N(y)

F̂x
D− F̂x

N(y)
+

(
f̂ x
N(y)

F̂x
D− F̂x

N(y)

)2

(2.3)

where

F̂x
D :=

1
nE[K1]

n

∑
i=1

K(h−1
K d(x,Xi)), K1 = K(h−1

K d(x,X1))

F̂x
N(y) :=

1
nE[K1]

n

∑
i=1

K(h−1
K d(x,Xi))H(h−1

H (y−Yi))

f̂ x
N(y) :=

1
nhHE[K1]

n

∑
i=1

K(h−1
K d(x,Xi))H ′(h−1

H (y−Yi))

f̂
′x
N (y) :=

1
nh2

HE[K1]

n

∑
i=1

K(h−1
K d(x,Xi))H ′(h−1

H (y−Yi)).

Our main purpose is to study the L2- consistency and the asymptotic normality of the nonpara-
metric estimate ĥ

′x of h
′x when the random filed (Zi, i ∈N) satisfies the following mixing condition.

3. Notations and hypotheses

All along the paper, when no confusion is possible, we will denote by C and C′ some strictly positive
generic constants. In order to establish our asymptotic results we need the following hypotheses, for
all r > 0 and i ∈ N:
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(H0) P(X ∈ B(x,r)) =: φx(r)> 0, where B(x,r) = {x′ ∈F/d(x,x′)< r}.
(H1) (Xi,Yi)i is an α-mixing sequence whose the coefficients of mixture verify:

∃a > 0, ∃c > 0 : ∀n ∈ N, α(n)≤ cn−a.

(H2) 0 < sup
i 6= j

P((Xi,X j) ∈ B(x,h)×B(x,h)) = O

(
(φx(h))

(a+1)/a

n1/a

)
.

Note that (H0) can be interpreted as a concentration hypothesis acting on the distribution of the
f.r.v. X , whereas (H2) concerns the behavior of the joint distribution of the pairs (Xi,X j). In fact, this
hypothesis is equivalent to assume that, for n large enough

sup
i6= j

P((Xi,X j) ∈ B(x,h)×B(x,h))
P(X ∈ B(x,h))

≤C
(

φx(h)
n

)1/a

.

(H3) For l ∈ {0,2}, the functions Ψl(s) = E
[

∂ lFX (y)
∂yl − ∂ lFx(y)

∂yl

∣∣∣d(x,X) = s
]

and

Φl(s) = E
[

∂ l f X (y)
∂yl − ∂ l f x(y)

∂yl

∣∣∣d(x,X) = s
]

are derivable at s = 0.
(H4) The bandwidth hK as n→ ∞ satisfies:

hK ↓ 0, ∀t ∈ [0,1] lim
hK→0

φx(thK)

φx(hK)
= βx(t) and nh3

Hφx(hK)→ ∞ as.

(H5) The kernel K from R into R+ is a differentiable function supported on [0,1]. Its derivative
K′ exists and is such that there exist two constants C and C′ with −∞ <C < K′(t)<C′ < 0
for 0≤ t ≤ 1.

(H6) H has even bounded derivative function supported on [0,1] that verifies∫
R

t2H ′(t)dt < ∞ and
∫
R
|t|b2 (H(2))2(t)dt < ∞.

(H7) There exist sequences of integers (un) and (vn) increasing to infinity such that (un+vn)≤ n,
satisfying

(i) vn = o((nh3
Hφx(hK))

1/2) and
(

n
h3

H φx(hK)

)1/2
α(vn)→ 0 as n→ 0,

(ii) qnvn = o((nh3
Hφx(hK))

1/2) and qn

(
n

h3
H φx(hK)

)1/2
α(vn)−→n→∞ 0

where qn is the largest integer such that qn(un + vn)≤ n.

3.1. Remarks on the assumptions

Remark 3.1. Assumption (H0) plays an important role in our methodology. It is known as (for
small h) the ”concentration hypothesis acting on the distribution of X” in infi- nite-dimensional
spaces. This assumption is not at all restrictive and overcomes the problem of the non-existence of
the probability density function. In many examples, around zero the small ball probabilityφx(h) can
be written approximately as the product of two independent functions ψ(x) and ϕ(h) as φx(h) =
ψ(x)ϕ(h)+o(ϕ(h)). This idea was adopted by Masry [19] who reformulated the Gasser et al. [14]
one. The increasing proprety of φx(·) implies that ζ x

h (·) is bounded and then integrable (all the more
so ζ x

0 (·) is integrable).
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Without the differentiability of φx(·), this assumption has been used by many authors where ψ(·)
is interpreted as a probability density, while ϕ(·) may be interpreted as a volume parameter. In the
case of finite-dimensional spaces, that is S = Rd , it can be seen that φx(h) =C(d)hdψ(x)+ohd),
where C(d) is the volume of the unit ball in Rd . Furthermore, in infinite dimensions, there exist
many examples fulfilling the decomposition mentioned above. We quote the following (which can
be found in Ferraty et al. [10]):

(1) φx(h)≈ ψ(h)hγ for some γ > 0.
(2) φx(h)≈ ψ(h)hγ exp{C/hp} for some γ > 0 and p > 0.
(3) φx(h)≈ ψ(h)/| lnh|.

The function ζ x
h (·) which intervenes in Assumption (H4) is increasing for all fixed h. Its point-

wise limit ζ x
0 (.) also plays a determinant role. It intervenes in all asymptotic properties, in particular

in the asymptotic variance term. With simple algebra, it is possible to specify this function (with
ζ0(u) := ζ x

0 (u) in the above examples by:

(1) ζ0(u) = uγ ,
(2) ζ0(u)δ1(u) where δ1(·) is Dirac function,
(3) ζ0(u) = 1]0,1](u).

Assumption (H2) is classical and permits to make the variance term negligible.

Remark 3.2. Assumptions (H3) is a regularity condition which characterize the functional space
of our model and is needed to evaluate the bias.

Remark 3.3. Assumptions (H5) and (H6) are classical in functional estimation for finite or infinite
dimension spaces.

3.2. Main results

3.3. Mean squared convergence

The first result concerns the L2-consistency of ĥ′
x
(y).

Theorem 3.1. Under assumptions (H0)-(H6), we have

E
[
ĥ′

x
(y)−h

′x(y)
]2

= B2
n(x,y)+

σ2
h′(x,y)

nh3
Hφx(hK)

+o(h4
H +hK)+o

(
1

nh3
Hφx(hK)

)
,

where

Bn(x,y) =
(B f ′

H −h
′x(y)BF

H)h
2
H +(B f ′

K −h
′x(y)BF

K)hK

1−Fx(y)
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with

B f ′
H (x,y) =

1
2

∂ 2 f x(y)
∂y2

∫
t2H”(t)dt

B f ′
K (x,y) = hKΦ

′
0(0)

(
K(1)−

∫ 1
0 (sK′(s))′βx(s)ds

)
(

K(1)−
∫ 1

0 K”(s)βx(s)ds
)

BF
H(x,y) =

1
2

∂ 2Fx(y)
∂y2

∫
t2H ′(t)dt

BF
K(x,y) = hKΨ

′
0(0)

(
K(1)−

∫ 1
0 (sK(s))′βx(s)ds

)
(

K(1)−
∫ 1

0 K′(s)βx(s)ds
) .

and

σ
2
h′(x,y) =

β2hx(y)(
β 2

1 (1−Fx(y))
) ∫ (H ′′(t))2dt (β j = K j(1)−

∫ 1

0
(K j)”(s)βx(s)ds, for, j = 1, 2),

Proof. By using the same decomposition used in ( Theorem 3.1 Rabhi et al. [21], P.408), we show
that the proof of Theorem 3.1 can be deduced from the following intermediates results:

Lemma 3.1. Under the hypotheses of Theorem (3.1), we have

E
[

f̂ ′
x
N(y)

]
− f

′x(y) = B f ′
H (x,y)h

2
H +B f ′

K (x,y)hK +o(h4
H)+o(hK)

and

E
[
F̂x

N(y)
]
−Fx(y) = BF

H(x,y)h
2
H +BF

K(x,y)hK +o(h2
H)+o(hK).

Remark 3.4. Observe that, the result of this lemma permits to write[
EF̂x

N(y)−Fx(y)
]
= O(h2

H +hK)

and [
E f̂ ′

x
N(y)− f

′x(y)
]
= O(h4

H +hK).

Lemma 3.2.
Under the hypotheses of Theorem (3.1), we have

Var
[

f̂ ′
x
N(y)

]
=

σ2
f ′(x,y)

nh3
Hφx(hK)

+o
(

1
nh3

Hφx(hK)

)
,

Var
[
F̂x

N(y)
]
= o

(
1

nhHφx(hK)

)
and

Var
[
F̂x

D

]
= o

(
1

nhHφx(hK)

)
.

where σ2
f ′(x,y) := f x(y)

∫
(H

′′
(t))2dt.
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Lemma 3.3.
Under the hypotheses of Theorem (3.1), we have

Cov( f̂ ′
x
N(y), F̂

x
D) = o

(
1

nh3
Hφx(hK)

)
,

Cov( f̂ ′
x
N(y), F̂

x
N(y)) = o

(
1

nh3
Hφx(hK)

)
and

Cov(F̂x
D, F̂

x
N(y)) = o

(
1

nhHφx(hK)

)
.

Remark 3.5.
It is clear that, the results of Lemmas (3.2 and 3.3) allows to write

Var
[
F̂x

D− F̂x
N

]
= o

(
1

nhHφx(hK)

)
3.4. Asymptotic normality

This section contains results on the asymptotic normality of ĥX(y) and ĥ′
X
(y). Let us assume that

hX is sufficiently smooth ( at least of class C 2).
We can write an estimator of the first derivative of the hazard function through the first derivative

of the estimator. Later, we need assumptions on the parameters of the estimator, ie on K,H,H ′,hH

and hK are little restrictive. Indeed, on one hand, they are not specific to the problem estimate
of hX (but inherent problems of FX , f X and f ′X estimation), and secondly they consist with the
assumptions usually made under functional variables.

To obtain the asymptotic normality of the conditional estimates, we have to add the following
assumptions:

(H8) H ′ is twice differentiable.
(H9) The bandwidth hH and hK , small ball probability φz(h) and arithmetical α mixing coeffi-

cient with order a > 3 satisfying

Theorem 3.2. Assume that (H0)-(H9) hold, then we have for any x ∈A ,(
nh3

Hφx(hK)

σ2
h′(x,y)

)1/2(
ĥ′

x
(y)−h′x(y)−Bn(x,y)

)
D→N (0,1) as n→ ∞.

where

A = {x ∈F , f x(y)(1−Fx(y)) 6= 0}

and D→ means the convergence in distribution.

Obviously, if one imposes some additional assumptions on the function φx(·) and the bandwidth
parameters (hK and hH) we can improved our asymptotic normality by removing the bias term
Bn(x,y).
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Corollary 3.1.
Under the hypotheses of Theorem 3.2 and if the bandwidth parameters (hK and hH) and if the

function φx(hK) satisfies:

lim
n→∞

(h4
H +hK)

√
nφx(hK) = 0

we have (
nh3

Hφx(hK)

σ2
h′(x,y)

)1/2(
ĥ
′x(y)−h

′x(y)
)

D→N (0,1) as n→ ∞.

Proof of Theorem and Corollary. We consider the decomposition

ĥx(y)−hx(y) =
1

F̂x
D− F̂x

N(y)

[
f̂ x
N(y)−E f̂ x

N(y)
]

+
hx(y)

F̂x
D− F̂x

N(y)

(
EF̂x

N(y)−Fx(y)
)

+
1

F̂x
D− F̂x

N(y)

(
E f̂ x

N(y)− f x(y)
)

+
hx(y)

F̂x
D− F̂x

N(y)

(
1−EF̂x

N(y)−
(

F̂x
D− F̂x

N(y)
))

(3.1)

and let

ĥ′X(y) =
f̂ ′X(y)

1− F̂Y (y)
+(ĥX(y))2, (3.2)

with

ĥ′X(y)−h′X(y) =
{(

ĥX(y)
)2
−
(
hX(y)

)2
}
+

{
f̂ ′X(y)

1− F̂X(y)
− f ′X(y)

1−FX(y)

}
(3.3)

for the first term of (3.3) we can write∣∣∣(ĥX(y)
)2
−
(
hX(y)

)2
∣∣∣≤ ∣∣∣ĥX(y)−hX(y)

∣∣∣.∣∣∣ĥX(y)+hX(y)
∣∣∣ (3.4)

because the estimator ĥX(·) converge a.co. to hX(·) we have

sup
y∈S

∣∣∣(ĥX(y)
)2
−
(
hX(y)

)2
∣∣∣≤ 2

∣∣∣hX(y)
∣∣∣ sup

y∈S

∣∣∣ĥX(y)−hX(y)
∣∣∣

S will be a fixed compact subset of R+, for the second term of (3.3) we have

f̂ ′X(y)

1− F̂X(y)
− f ′X(y)

1−FX(y)
=

1

(1− F̂X(y))(1−FX(y))

{
f̂ ′X(y)− f ′X(y)

}
+

1

(1− F̂X(y))(1−FX(y))

{
f ′X(y)

(
F̂X(y)−FX(y)

)}
+

1

(1− F̂X(y))(1−FX(y))

{
FX(y)

(
f̂ ′X(y)− f ′X(y)

)}
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Therefore, Theorem 3.2 and Corollary 3.1 are a consequence of Lemma 3.1, remark (3.4) and the
following results.

Lemma 3.4. Under the hypotheses of Theorem 3.2(
nh3

Hφx(hK)

σ2
f ′(x,y)

)1/2(
f̂
′x
N (y)−E

[
f̂
′x
N (y)

])
→ N(0,1).

Lemma 3.5. Under Assumptions (H0)-(H6) and (H8), we have

(nφx(hK))
1/2
(

F̂X(y)−FX(y)
)

D−→ N
(
0,σ2

FX (y)
)

(3.5)

where

σ
2
FX (y) =

β2FX(y)
(
1−FX(y)

)
β 2

1

Lemma 3.6. Under the hypotheses of Theorem 3.2

F̂x
D− F̂x

N(y)→ 1−Fx(y) in probability

and (
nhHφx(hK)

σ2
h (x,y)

)1/2(
F̂x

D− F̂x
N(y)−1+E[F̂x

N(y)]
)
= oP(1).

Lemma 3.7. Under Assumptions (H0)-(H7), we have

(nhHφx(hK))
1/2
(

ĥX(y)−hX(y)
)

D−→ N
(
0,σ2

hX (y)
)

(3.6)

where

σ
2
hX (y) =

β2hX(y)
β 2

1 (1−FX(y))

∫
R
(H ′(t))2dt

The proofs of Lemma 3.5 can be seen in Ezzahrioui and Ould-Saı̈d [9].

4. Applications

In this section we emphasize the potential impact of our work by studying its practical interest in
some important statistical problems. Moreover, in order to show the easily implementation of our
approach on a concrete cases, we discuss in the second part of this section the practical utilization
of our model in risk analysis.

• On the choices of the bandwidths parameters: As all smoothing by a kernel method, the
choice of bandwidths parameters has crucial role in determining the performance of the
estimators. The mean quadratic error given in Theorem (3.1) is a basic ingredient to solve
this problem. Usually, the ideal theoretical choices are obtained by minimizing this error.
Here, we have explicated its leading term which is

B2
n(x,y)+

σ2
h′(x,y)

nh3
Hφx(hK)

.

Then, the smoothing parameters minimizing this leading term is asymptotically optimal
with respect the L2-error. However, the practical utilization of this criterium requires some
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additional computational efforts. More precisely, it requires the estimation of the unknown
quantities Ψ′0, Φ′0, f

′x(y) and Fx(y). Clearly, all these estimations can be obtained by using
a pilots estimators of the conditional distribution function Fx(y) and of the conditional
density f

′x(y). Such estimations are possible by using the kernel methods, with a separate
choice of the bandwidths parameters between both models. More preciously, for the condi-
tional density, we propose to adopt, to the functional case, the bandwidths selectors studied
by Bouraine et al. [6] by considering the following criterion

CV PDF =
1
n ∑

i=1
W1(Xi)

∫
f̂ ′

X−i2
i (y)W2(y)dy

−2
n ∑

i=1
f̂ ′

X−i
i (Yi)W1(Xi)W2(Yi) (4.1)

while, for the the conditional distribution function we can use the cross-validation rule
proposed by De Gooijer and Gannoun (2000) (in vectorial case)

CVCDF =
1
n ∑

k,l∈In

[
1Yk≤Yl − F̂X−k

k (Yl)
]2

W (Xk)

where W1, W2 and W are some suitable trimming functions and

F̂X−k
k (Yl) =

∑i∈Ik,l
n,ςn

K(h−1
K d(Xk,Xi))H(h−1

H (Yl−Yi))

∑i∈Ik,l
n,ςn

K(h−1
K d(Xk,Xi))

and

f̂ ′
X−i

i (y) =
h−2

H ∑ j∈Ii
n,ςn

K(h−1
K d(Xi,X j))H

′′
(h−1

H (y−Yj))

∑ j∈Ii
n,ςn

K(h−1
K d(Xi,X j))

with {
Ik,l
n,ςn = {i such that |i− k| ≥ ςn and |i− l| ≥ ςn

and Ii
n,ςn

= { j such that | j− i| ≥ ςn }.

Of course, we can also adopt another selection methods, such that, the parametric boot-
strap method, proposed by Hall et al. [16] and Hyndman et al. [17] for, respectively, the
conditional cumulative distribution function and the conditional density in the finite dimen-
sional case. Nevertheless, a data-driven method allows to overcome this additional compu-
tation is very important in practice and is one of the natural prospects of the present work.
• Confidence intervals: The main application of Theorem 3.2 is to build confidence band for

the true value of h
′x(y). Similarly to the previous application, the practical utilization of our

result in this topic requires the estimation of the quantity σ
2
h′(x,y). A plug-in estimate for

the asymptotic standard deviation σ
2
h′(x,y) can be obtained by using the estimators f̂

′x(y)
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and F̂x(y) of f
′x(y) and Fx(y). Then we get

σ̂
2
h′(x,y) :=

β̂2 f̂
′x(y)(

β̂1
2
(1− F̂x(y))2

)
where 

β̂1 =
1

nφx(hK)

n

∑
i=1

K(h−1
K d(x,Xi))

and β̂2 =
1

nφx(hK)

n

∑
i=1

K2(h−1
K d(x,Xi)).

Clearly, the function φx(·) does not appear in the calculation of the confidence interval
by simplification. More precisely, we obtain the following approximate (1−ζ ) confidence
band for h

′x(y)

ĥ
′x(y)± t1−ζ/2×

(
σ̂2

h′(x,y)
nh3

Hφx(hK)

)1/2

where t1−ζ/2 denotes the 1−ζ/2 quantile of the standard normal distribution.

5. Appendix

In the following, we will denote ∀i

Ki = K(h−1
H d(x,Xi)), Hi = H(h−1

H (y−Yi) and H
′′
i = H

′′
(h−1

H (y−Yi).

Proof of Lemma 3.1. Firstly, for E[ f̂ ′
x
N(y)], we start by writing

E[ f̂ ′
x
N(y)] =

E
[
K1E[h−2

H H
′′
1 |X ]

]
E[K1]

with h−2
H E

[
H
′′
1 |X
]
=
∫
R

H
′′
(t) f X(y−hHt)dt.

The latter can be re-written, by using a Taylor expansion under (H3), as follows

h−2
H E[H

′′
1 |X ] = f X(y)+

h2
H

2

(∫
t2H

′′
(t)dt

)
∂ 2 f X(y)

∂ 2y
+o(h2

H).

Thus, we get

E
[

f̂ ′
x
N(y)

]
=

1
E[K1]

(
E
[

h2
H

2
K1

∂ 2 f X(y)
∂ 2y

]∫
t2H

′′
(t)dt

)
+

1
E[K1]

(
E
[
K1 f X(y)

]
+o(h2

H)
)
.

Let ψl(·,y) := ∂ l f ·(y)
∂ ly : for l ∈ {0,2}, since Φl(0) = 0, we have

E [K1ψl(X ,y)] = ψl(x,y)E[K1]+E [K1 (ψl(X ,y)−ψl(x,y))]
= ψl(x,y)E[K1]+E [K1 (Φl(d(x,X))]

= ψl(x,y)E[K1]+Φ
′
l(0)E [d(x,X)K1]+o(E [d(x,X)K1]).
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So,

E
[

f̂ ′
x
N(y)

]
= f x(y)+

h2
H

2
∂ 2 f x(y)

∂y2

∫
t2H”(t)dt +o

(
h2

H
E [d(x,X)K1]

E[K1]

)
+Φ

′
0(0)

E [d(x,X)K1]

E[K1]
+o
(
E [d(x,X)K1]

E[K1]

)
.

Similarly to Ferratyet al. [10] we show that

1
φx(hK)

E [d(x,X)K1] = hK

(
K(1)−

∫ 1

0
(sK(s))′βx(s)ds+o(1)

)
and

1
φx(hK)

E [K1] = K(1)−
∫ 1

0
K′(s)βx(s)ds+o(1).

Hence,

E
[

f̂ ′
x
N(y)

]
= f x(y)+

h2
H

2
∂ 2 f x(y)

∂y2

∫
t2H

′′
(t)dt

+hKΦ
′
0(0)

(
K(1)−

∫ 1
0 (sK(s))′βx(s)ds

)
(

K(1)−
∫ 1

0 K′(s)βx(s)ds
) +o(h2

H)+o(hK).

Secondly, concerning E[F̂x
N(y)], we write by an integration by part

E[F̂x
N(y)] =

1
E[K1]

E [K1E[H1|X ]] with E [H1|X ] =
∫
R

H ′(t)FX(y−hHt)dt.

The same steps used to studying E[ f̂ x
N(y)] can be followed to prove that

E
[
F̂x

N(y)
]
= Fx(y)+

h2
H

2
∂ 2Fx(y)

∂y2

∫
t2H ′(t)dt

+hKΨ
′
0(0)

(
K(1)−

∫ 1
0 (sK(s))′βx(s)ds

)
(

K(1)−
∫ 1

0 K′(s)βx(s)ds
) +o(h2

H)+o(hK).

Proof of Lemma 3.2. For the first quantity Var[ f̂ x
N(y)], we have

s2
n = Var[ f̂ ′

x
N(y)] =

1
(nh2

HE [K1(x)])2Var

[
∑
i=1

Γi(x)

]

where

Γi(x) = Ki(x)H
′′
i (y)−E [Ki(x)H”i(y)] .

Published by Atlantis Press
Copyright: the authors

313



Abbes Rabhi, Sara Soltani and Aboubacar Traore

Thus

Var[ f̂ x
N(y)] =

1
(nh2

HE [K1])2 ∑
i 6= j

Cov(Γi(x),Γ j(x))︸ ︷︷ ︸
scov

n

+
n

∑
i=1

Var (Γi(x))︸ ︷︷ ︸
svar

n

=
Var [Γ1]

n(h2
HE [K1])2 +

1
(nh2

HE [K1])2 ∑
i6= j

Cov(Γi,Γ j).

Let us calculate the quantity Var [Γ1(x)]. We have:

Var [Γ1(x)] = E
[
K2

1 (x)H
′′2
1 (y)

]
−
(
E
[
K1(x)H

′′
1 (y)

])2

= E
[
K2

1 (x)
] E[K2

1 (x)H
′′2
1 (y)

]
E
[
K2

1 (x)
]

−(E [K1(x)])2
(
E [K1(x)H ′1(y)]

E [K1(x)]

)2

.

So, by using the same arguments as those used in pervious lemma we get

1
φx(hK)

E
[
K2

1 (x)
]
= K2(1)−

∫ 1

0
(K2(s))′βx(s)ds+o(1)

E
[
K2

1 (x)H
′′2
1 (y)

]
E
[
K2

1 (x)
] = h2

H f x(y)
∫

H
′′2
(t)dt +o(h2

H)

E[K1(x)H
′′
1 (y)]

E [K1(x)]
= h2

H f x(y)+o(h2
H)

which implies that

Var [Γi(x)] = h2
Hφx(hK) f x(y)

∫
H”2

(t)dt
(

K2(1)−
∫ 1

0
(K2(s))′βx(s))ds

)
+o
(
h2

Hφx(hK)
)
. (5.1)

Now, let us focus on the covariance term. To do that, we need to calculate the asymptotic behav-
ior of quantity defined as

∑
i6= j

∣∣∣Cov(Γi(x),Γ j(x))
∣∣∣= ∑

1≤|i− j|≤cn

∣∣∣Cov(Γi(x),Γ j(x))
∣∣∣= J1,n + J2,n.

with cn→ ∞, as n→ ∞.
For all (i, j) we write

Cov(Γi(x),Γ j(x)) = E
[
Ki(x)K j(x)H

′′
i (y)H

′′
j (y)

]
−
(
E
[
Ki(x)H

′′
i (y)

])2

and we use the fact that E
[
H
′′
i (y)H

′′
j (y)|(Xi,X j)

]
= O(h4

H); ∀i 6= j,

E
[
H
′′
i (y)|Xi

]
= O(h2

H), ∀i.
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For J1,n: by means of the integral realized above and under (H2) and (H5), we get

E
[
KiK jH

′′
i H

′′
j

]
≤Ch4

HP [(Xi,X j) ∈ B(x,hK)×B(x,hK)]

and

E
[
Ki(x)H

′′
i (y)

]
≤Ch2

HP(Xi ∈ B(x,hK)) .

It follows that, the hypothesis (H0), (H2) and (H5), imply that

Cov(Γi(x),Γ j(x))≤Ch2
Hφx(hK)

(
φx(hK)+

(
φx(hK)

n

)1/a
)

So

J1,n ≤C

(
ncnh4

H

(
φx(hK)

n

)1/a

φx(hK)

)
.

Hence

J1,n = O

(
ncnh4

H

(
φx(hK)

n

)1/a

φx(hK)

)
.

On the other hand, these covariances can be controled by mean of the usual Davydov-Rios’s
covariance inequality for mixing processes (see Rio [25], formula 1.12a). Together with (H1), this
inequality leads to:

∀i 6= j,
∣∣Cov(Di(x),D j(x))

∣∣ ≤ C |i− j|−a.

By the fact, ∑
k≥cn+1

k−a ≤
∫

∞

cn

t−adt =
c−a+1

n

a−1
, we get by applying (H1),

J2,n ≤ ∑
|i− j|≥cn+1

|i− j|−a ≤ nc−a+1
n

a−1

Thus, by using the following classical technique (see Bosq [5]), we can write

scov
n = ∑

0<|i− j|≤un

∣∣Cov(Γi(x),Γ j(x))
∣∣+ ∑
|i− j|>un

∣∣Cov(Γi(x),Γ j(x))
∣∣ .

Thus

scov
n ≤ Cn

(
cnh4

H

(
φx(hK)

n

)1/a

φx(hK)+
c−a+1

n

a−1

)

Choosing cn = h−4
H

(
φx(hK)

n

)−1/a
, and owing to the right inequality in (H7b), we can deduce

scov
n = o

(
nh2

Hφx(hK)
)
. (5.2)
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Finally,

s2
n = o

(
nh2

Hφx(hK)
)
+O

(
nh2

Hφx(hK)
)

= O
(
nh2

Hφx(hK)
)

In conclusion, we have

Var[ f̂ ′
x
N(y)] =

f x(y)
∫

H
′′2
(t)dt

nh4
Hφx(hK)


(

K2(1)−
∫ 1

0 (K
2(s))′βx(s)ds

)
(

K(1)−
∫ 1

0 K′(s)βx(s)ds
)2


+o
(

1
nh2

Hφx(hK)

)
(5.3)

Now, for F̂x
N(y), (resp. F̂x

D) we replace H”i(y) by Hi(y) (resp. by 1) and we follow the same ideas,
under the fact that H ≤ 1

Var[F̂x
N(y)] =

Fx(y)
nφx(hK)

(∫
H ′

2
(t)dt

)
(

K2(1)−
∫ 1

0 (K
2(s))′βx(s)ds

)
(

K(1)−
∫ 1

0 K′(s)βx(s)ds
)2


+o
(

1
nφx(hK)

)
.

and

Var[F̂x
D] =

1
nφx(hK)


(

K2(1)−
∫ 1

0 (K
2(s))′βx(s)ds

)
(

K(1)−
∫ 1

0 K′(s)βx(s)ds
)2

+o
(

1
nφx(hK)

)
.

This yields the proof.

Proof of Lemma 3.3. The proof of this lemma follows the same steps as the previous Lemma. For
this, we keep the same notation and we write

Cov( f̂ ′
x
N(y), F̂

x
N(y)) =

1
nh2

H(E [K1(x)])2Cov(Γ1(x),∆1(x))

+
1

n2h2
H(E [K1(x)])2 ∑

i 6= j
Cov(Γi(x),∆ j(x))

where

∆i(x) = Ki(x)Hi(y)−E [Ki(x)Hi(y)] .

For the first term, we have under (H4)

Cov(Γ1(x),∆1(x)) = E[K2
1 (x)H1(y)H

′′
1 (y)]−E[K1(x)H1(y)]E[K1(x)H

′′
1 (y)]

= O(h2
Hφx(hK))+O(h2

Hφ
2
x (hK))

= O(h2
Hφx(hK))
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Therefore,

1
nh2

H(E [K1(x)])2Cov(Γ1(x),∆1(x)) = O

(
1

nφx(hK)

)
= o

(
1

nh2
Hφx(hK)

)
(5.4)

So, by using similar arguments as those invoked in the proof of Lemma 3.2, and we use once
again the boundedness of K and H, and the fact that (H1) and (H6) imply that

E
(

H
′′
i (y)|Xi

)
= O(h2

H).

Moreover, the right part of (H7b) implies that

Cov(Γi(x),∆ j(x)) = O

(
h2

Hφx(hK)

(
φx(hK)

n

)1/a

+φx(hK)

)
,

Meanwhile, using the Davydov-Rio’s inequality in Rio [25] for mixing processes leads to∣∣Cov(Γi(x),∆ j(x))
∣∣≤Cα (|i− j|)≤C|i− j|−a,

we deduce easily that for any cn > 0 :

∑
i6= j

Cov(Γi(x),∆ j(x)) = O

(
ncn h2

Hφx(hK)

(
φx(hK)

n

)1/a

+φx(hK)

)
+ O

(
nh2

H c−a
n
)
.

It suffices now to take cn = h−2
H

(
φx(hK)

n

)−1/a

to get the following expression for the sum of

the covariances:

∑
i6= j

Cov(Γi(x),∆ j(x)) = o(nφx(hK)) . (5.5)

From (5.4) and (5.5) we deduce that

Cov( f̂ ′
x
N(y), F̂

x
N(y)) = o

(
1

nh2
Hφx(hK)

)
The same arguments can be used to shows that

Cov( f̂ ′
x
N(y), F̂

x
D) = o

(
1

nh2
Hφx(hK)

)
and

Cov(F̂x
N(y), F̂

x
D) = o

(
1

nφx(hK)

)
.
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Proof of Lemma 3.4. Let

Sn =
n

∑
i=1

Λi(x)

where

Λi(x) :=

√
hHφx(hK)

hHE[K1(x)]
Γi(x). (5.6)

Obviously, we have√
nh3

Hφx(hK)
[
σ f ′(x,y)

]−1
(

f̂ ′
x
N(y)−E f̂ ′

x
N(y)

)
=
(
n(σ f ′(x,y))2)−1/2

Sn.

Thus, the asymptotic normality of
(
n(σ f ′(x,y))2

)−1/2 Sn, is sufficient to show the proof of this
Lemma. This last is shown by the blocking method, where the random variables Λi are grouped into
blocks of different sizes defined.

We consider the classical big- and small-block decomposition. We split the set {1,2, . . . ,n} into
2kn +1 subsets with large blocks of size un and small blocks of size vn and put

kn :=
[ n

un + vn

]
.

Assumption (H7)(ii) allows us to define the large block size by

un =:
[(nh3

Hφx(hK)

qn

)1/2 ]
.

Using Assumption (H7) and simple algebra allows us to prove that

vn

un
→ 0,

un

n
→ 0,

un√
nh3

Hφx(hK)
→ 0, and

n
un

α(vn)→ 0 (5.7)

Now, let ϒ j, ϒ′j and ϒ
′′
j be defined as follows:

ϒ j =
j(u+v)+u

∑
i= j(u+v)+1

Λi(x), 0≤ j ≤ k+1

ϒ
′
j =

( j+1)(u+v)+u

∑
i= j(u+v)+u+1

Λi(x), 0≤ j ≤ k+1

ϒ
′′
j =

n

∑
i=k(u+v)+1

Λi(x), 0≤ j ≤ k+1

Cleary, we can write

Sn =
k−1

∑
j=0

ϒ j +
k−1

∑
j=0

ϒ
′
j +ϒ

′′
kr =: S′n +S′′n +S

′′′
n .
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We prove that

(i)
1
n
E(S′′n)2 −→ 0, (ii)

1
n
E(S

′′′
n )

2 −→ 0, (5.8)

∣∣∣E{exp
(

itn−1/2S′n
)}
−

k−1

∏
j=0

E
{

exp
(

itn−1/2
ϒ j

)}∣∣∣−→ 0, (5.9)

1
n

k−1

∑
j=0

E
(
ϒ

2
j
)
−→ σ

2
f ′(x,y), (5.10)

1
n

k−1

∑
j=0

E
(

ϒ
2
j1{|ϒ j|>ε

√
nσ2

f ′ (x,y)}

)
−→ 0 (5.11)

for every ε > 0.
Expression (5.8) show that the terms S

′′
n and S

′′′
n are negligible, while Equations (5.9) and (5.10)

show that the ϒ j are asymptotically independent, verifying that the sum of their variances tends
to σ2

f ′(x,y). Expression (5.11) is the Lindeberg-Feller’s condition for a sum of independent terms.
Asymptotic normality of Sn is a consequence of Equations (5.8)-(5.11).

• Proof of (5.8) Because E(Λ j) = 0, ∀ j, we have that

E(S
′′
n)

2 = Var

(
k−1

∑
j=0

ϒ
′
j

)
=

k−1

∑
j=0

Var
(
ϒ
′
j
)

+ ∑
0≤i< j≤k−1

Cov
(
ϒ
′
i,ϒ
′
j
)

:= Π1 +Π2.

By the second-order stationarity we get

Var
(
ϒ
′
j
)
= Var

(
( j+1)(un+vn)

∑
i= j(un+vn)+un+1

Λi(x)

)

= vnVar(Λ1(x))+
vn

∑
i 6= j

Cov(Λi(x),Λ j(x)) .

Then

Π1

n
=

kvn

n
Var(Λ1(x))+

1
n

k−1

∑
j=0

vn

∑
i6= j

Cov(Λi(x),Λ j(x))

≤ kvn

n

{
φx(hK)

hHE2K1(x)
Var (Γ1(x))

}
+

1
n

n

∑
i 6= j

∣∣∣Cov(Λi(x),Λ j(x))
∣∣∣

≤ kvn

n

{
1

hHφx(hK)
Var (Λ1(x))

}
+

1
n

n

∑
i 6= j

∣∣∣Cov(Λi(x),Λ j(x))
∣∣∣

Simple algebra gives us

kvn

n
∼=
(

n
un + vn

)
vn

n
∼=

vn

un + vn

∼=
vn

un
−→ 0 as n→ ∞.
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Using Equation (5.2) we have

lim
n→∞

Π1

n
= 0 (5.12)

Now, let us turn to Π2/n. We have

Π2

n
=

1
n

k−1

∑
i=0i 6= j

k−1

∑
j=0

Cov(ϒi(x),ϒ j(x))

=
1
n

k−1

∑
i=0i 6= j

k−1

∑
j=0

vn

∑
l1=1

vn

∑
l2

Cov
(
Λm j+l1 ,Λm j+l2

)
with mi = i(un + vn)+ vn. As i 6= j, we have |mi−m j + l1− l2| ≥ un. It follows that

Π2

n
≤ 1

n

n

∑
i=1|i− j|≥un

n

∑
j=1

Cov(Λi(x),Λ j(x)) ,

then

lim
n→∞

Π2

n
= 0. (5.13)

By Equations (5.12) and (5.13) we get Part(i) of the Equation(5.8).
We turn to (ii), we have

1
n
E
(

S
′′′
n

)2
=

1
n

Var
(

ϒ
′′
k

)
=

ϑn

n
Var (Λ1(x))+

1
n

ϑn

∑
i=1i6= j

ϑn

∑
j=1

Cov(Λi(x),Λ j(x))

where ϑn = n− kn(un + vn); by the definition of kn, we have ϑn ≤ un + vn.
Then

1
n
E
(

S
′′′
n

)2
≤ un + vn

n
Var (Λ1(x))+

1
n

ϑn

∑
i=1i 6= j

ϑn

∑
j=1

Cov(Λi(x),Λ j(x))

and by the definition of un and vn we achieve the proof of (ii) of Equation (5.8).
• Proof of (5.9) We make use of Volkonskii and Rozanov’s lemma (see the appendix in

Masry, [19]) and the fact that the process (Xi,X j)is strong mixing.
Note that ϒa is F ja

ia -mesurable with ia = a(un+vn)+1 and ja = a(un+vn)+un; hence,
with Vj = exp

(
itn−1/2ϒ j

)
we have

∣∣∣E{exp
(

itn−1/2S′n
)}
−

k−1

∏
j=0

E
{

exp
(

itn−1/2
ϒ j

)}∣∣∣ ≤ 16knα(vn +1)

∼=
n
vn

α(vn +1)

which goes to zero by the last part of Equation (5.7). Now we establish Equation (5.10).
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• Proof of (5.10) Note that Var(S′n) −→ σ2
f ′(x,y) by Equation (5.8) and since Var(S′n) −→

σ2
f ′(x,y) (by the definition of the Λi and Equation (5.3)). Then because

E
(
S′n
)2

=Var
(
S′n
)
=

k−1

∑
j=0

Var (ϒ j)+
k−1

∑
i=0 i6= j

k−1

∑
j=0

Cov(ϒi,ϒ j) ,

all we have to prove is that the double sum of covariances in the last equation tends to
zero. Using the same arguments as those previously used for Π2 in the proof of first term of
Equation (5.8)we obtain by replacing vn by un we get

1
n

k−1

∑
j=0

E
(
ϒ

2
j5
)
=

kun

n
Var (Λ1)+o(1).

As Var (Λ1)−→ σ2
f ′(x,y) and kun/n−→ 1, we get the result.

Finally, we prove Equation (5.11).
• Proof of (5.11) Recall that

ϒ j =
j(un+vn)+un

∑
i= j(un+vn)+1

Λi.

Making use Assumptions (H5) and (H6), we have∣∣∣Λi

∣∣∣≤C
(
h2

Hφx(hK)
)−1/2

thus ∣∣∣ϒ j

∣∣∣≤Cun
(
h2

Hφx(hK)
)−1/2

,

which goes to zero as n goes to infinity by Equation (5.7). Then for n large enough, the set

{|ϒ j|> ε

(
nσ2

f ′(x,y)
)−1/2

} becomes empty, this completes the proof and therefore that of

the asymptotic normality of
(
n(σ f ′(x,y))2

)−1/2 Sn,

Proof of Lemma 3.6. It is clear that, the result of Lemma (3.1) and Lemma (3.2) permits us

E
(

F̂x
D− F̂x

N−1+Fx(y)
)
−→ 0

and

Var
(

F̂x
D− F̂x

N−1+Fx(y)
)
−→ 0

then

F̂x
D− F̂x

N−1+Fx(y) P−→0

Moreover, the asymptotic variance of F̂x
D− F̂x

N given in remark (3.5) allows to obtain

nhHφx(hK)

σh(x,y)2 Var
(

F̂x
D− F̂x

N−1+E
(

F̂x
N(y)

))
−→ 0.
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By combining result with the fact that

E
(

F̂x
D− F̂x

N−1+E
(

F̂x
N(y)

))
= 0

we obtain the claimed result.

Proof of Lemma 3.7. The proof is based on decomposition (3.1). Therefore, Lemma 3.7 is conse-
quence of a special case of the lemmas Lemma 3.1 with Lemma 3.4 (it suffices to replace f̂ ′

x
N(y)

and f
′x(y) by f̂ x

N(y) and f x(y)) Remark 3.4 and Lemma 3.6.
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