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The uniformly minimum variance unbiased estimators (UMVUE) of the parameters and reliability functions
of a bivariate geometric distribution(BGD) have been derived.The exact variances of the maximum likelihood
estimator (MLE) and of UMVUE have been derived and the corresponding mean square errors have been
compared.It is found that in some cases UMVUE is better and in some cases MLE is better with respect to
the mean square errors. In the final section an example of actual data from the game Cricket’s Indian Premium
League 2014 (IPL 2014) has been given.
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1. Introduction

The discrete bivariate geometric distribution (BGD) has applications in survival analysis and reli-
ability theory. Any system with two or more individual components like twin engines of an air-
plane or paired organs in a human body can be studied by using such reliability models.The two-
component system can be visualized as comprising of three independent components,the third being
the interdependence of the two components.Phatak and Sreehari (1981) introduced a version of
BGD as a stochastic model for giving the distribution of good and marginally good items that are
produced before a bad item is produced by a production unit.

Downtown(1970) also described the BGD which arises in a shock model with two compo-
nents.Suppose that the number of shocks suffered by each component before failure can be repre-
sented by a population in which p1 and p2 are proportions of shocks affecting the first and second
components respectively without failure and a proportion p3=(1− p1− p2) of the shocks leading to
failure of both components,see Downtown(1970).

Let X be number of shocks to component 1 prior to the first failure.Let Y be number of shocks
to component 2 prior to the first failure.
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The joint probability mass function of (X,Y) is given by Kocherlakote (1992) as

P(X = x,Y = y) =


(

x+ y
x

)
px

1 py
2 p3 ; x = 0,1,2, · · · ,y = 0,1,2, · · · ,

0 < p1 < 1; 0 < p2 < 1; p3 = 1− p1− p2

0 ; otherwise

(1.1)

Krishna and Pundir(2009) estimated the parameters of BGD as given in (1.1).Krishna and
Pundir(2009) have derived MLE of the parameters and the reliability functions. Further they have
derived asymptotic expected values of MLE and reliability functions.But they have not obtained
the UMVUE of the parameters of the BGD. In this paper we obtain the UMVUE of the parameters
and the reliability functions.Further we derive the exact expression of its variance.Morover we have
compared the mean square errors of MLE and UMVUE. It is found that in some cases UMVUE is
better and in some cases MLE is better with respect to its mean square errors.

2. Pre-Requisite Results

A. Suppose in an urn there are W+R+G+1 balls such that W are white,R are red, G are orange
and one of a different colour.We add x balls of white colour to the urn and remove x balls of red or
orange colour.If we select a count of R balls from the urn such that x are white and the remaining
are red or orange.

R

∑
x=0

(
W + x

x

)(
R+G− x

R− x

)
=

(
W +R+G+1

R

)
G > 0 (2.1)

(2.1) can be easily proved by elementary algebraic methods..

B. Hypergeometric Functions.

1. mFn(a1,a2, ...,am ;b1,b2, ....,bn; p2)

=
∞

∑
j=0

Γ(a1 + j)
Γa1

Γ(a2 + j)
Γa2

....
Γ(am + j)

Γam

Γb1

Γ(b1 + j)
....

Γbn

Γ(bn + j)
p j

2
j!

(2.2)

2. m+2Fn+1 ((a)m,b,c ;(d)n,e; p2)

=
∞

∑
j=0

(Γ(a+ j))m

(Γa)m
Γ(b+ j)

Γb
Γ(c+ j)

Γc
(Γd)n

(Γ(d + j))n
Γe

Γ(e+ j)
p j

2
j!

(2.3)

3. F((a)m+n,(b)m,(c)n;(d)m+n,(e)m; p1, p2)

=
∞

∑
m=0

∞

∑
n=0

Γ(a+m+n)
Γ(a)

Γ(b+m)

Γ(b)
Γ(c+n)

Γ(c)
Γ(d)

Γ(d +m+n)
Γ(e)

Γ(e+m)

pm
1

m!
pn

2
n!

(2.4)
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3. Main Results

Theorem 3.1
The UMVUE of pr1

1 pr2
2 pr3

3

=

(
s1 +n− r1− r3−1

s1− r1

) (
s1 + s2 +n− r1− r2− r3−1

s2− r2

)
(

s1 +n−1
s1

)(
s1 + s2 +n−1

s2

) (3.1)

where S1 =
n
∑

i=1
Xi and S2 =

n
∑

i=1
Yi

Proof: The joint distribution of (X1Y1,X2Y2, ...,XnYn) belongs to the exponential family and ( S1,
S2) is sufficient and complete for (1.1). Hence by using Lehmann Scheffe’s theorem we can get
UMVUE of pr1

1 pr2
2 pr3

3 .

The joint distribution of (S1,S2) is given by

P(S1 = s1,S2 = s2) =



(
s1 +n−1

s1

)(
s1 + s2 +n−1

s2

)
p1

s1 p2
s2 p3

n ; s1 = 0,1,2, ...,

s2 = 0,1,2...,
0 < p1 < 1;0 < p2 < 1
p3 = 1− p1− p2

0 ; otherwise
(3.2)

Let φ(s1,s2) be the UMVUE of pr1
1 pr2

2 pr3
3

E(φ(s1,s2) =
∞

∑
s1=0

∞

∑
s2=0

φ(s1,s2)

(
s1 +n−1

s1

)(
s1 + s2 +n−1

s2

)
p1

s1 p2
s2 p3

n

(3.3)

= p1
r1 p2

r2 p3
r3

∞

∑
s1=r1

∞

∑
s2=r2

φ(s1,s2)

(
s1 +n−1

s1

)(
s1 + s2 +n−1

s2

)
p1

s1−r1 p2
s2−r2 p3

n−r3 = 1

Therefore

φ(s1,s2) =

(
s1 +n− r1− r3−1

s1− r1

) (
s1 + s2 +n− r1− r2− r3−1

s2− r2

)
(

s1 +n−1
s1

) (
s1 + s2 +n−1

s2

) (3.4)
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Particular Cases

1. r2 = r3 = 0

p̂1r1 =

(
s1 +n− r1−1

s1− r1

) (
s1 + s2 +n− r1−1

s2

)
(

s1 +n−1
s1

) (
s1 + s2 +n−1

s2

) (3.5)

2. r1 = r3 = 0

p̂2r2 =

(
s1 +n−1

s1

)(
s1 + s2 +n− r2−1

s2− r2

)
(

s1 +n−1
s1

)(
s1 + s2 +n−1

s2

) (3.6)

3. r1 = r2 = 0

p̂3r3 =

(
s1 +n− r3−1

s1

)(
s1 + s2 +n− r3−1

s2

)
(

s1 +n−1
s1

)(
s1 + s2 +n−1

s2

) (3.7)

Similarly we can obtain UMVUE for pr1
1 pr2

2 pr3
3 for different values of r1,r2 and r3.

Theorem 3.2

V (φ(s1,s2)) =
ΓnΓ(r1 +1)Γ(r2 +1)

Γ(n+ r1 + r2)
pr1

1 pr2
2 pn

3

× F(((n− r3)m+n)
2,(r1 +1)m,(r2 +1)n;(r1 + r2 +n)m+n,(1)m,(1)n; p1, p2)

− p2r1
1 p2r2

2 p2r3
3

(3.8)

Proof:

E(φ(s1,s2)
2 =

∞

∑
s1=r1

∞

∑
s2=r2

(φ(s1,s2))
2
(

s1 +n−1
s1

)(
s1 + s2 +n−1

s2

)
p1

s1 p2
s2 p3

n (3.9)

=
∞

∑
s1=r1

[(
s1 +n− r1− r3−1

s1− r1

)]2

(
s1 +n−1

s1

) ps1
1 pn

3

∞

∑
s2=r2

[(
s1 + s2 +n− r1− r3−1

s2− r2

)]2

(
s1 + s2 +n−1

s2

) ps2
2
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=
∞

∑
s1=r1

[(
s1 +n− r1− r3−1

s1− r1

)]2

(
s1 +n−1

s1

) ps1
1 pn

3

∞

∑
j=0

[(
s1 + j+n− r1− r3−1

j

)]2

(
s1 + j+ r2 +n−1

j+ r2

) p j+r2
2

Consider

∞

∑
j=0

(
s1 + j+n− r1− r3−1

j

)
)2(

s1 + j+ r2 +n−1
j+ r2

) p j+r2
2 = (p2)

r2
(s1 +n−1)! r2!
(s1 + r2 +n−1)!

× 3F2((s1 +n− r1− r3)
2,r2 +1;s1 + r2 +n,1; p2)

(3.10)

Hence

E(φ(s1,s2))
2 =

∞

∑
k=0

Γ(n− r3 + k)Γ(n− r3 + k)Γ(r1 +1+ k)ΓnΓ(r2 +1)
Γ(n− r3)Γ(n− r3)Γ(k+1)Γ(k+1)Γ(r1 + r2 +n+ k)

pk+r1
1 pr2

2 pn
3

× 3F2((k+n− r3)
2,r2 +1;k+ r1 + r2 +n,1; p2)

=
∞

∑
k=0

∞

∑
j=0

(Γ(n− r3 + k+ j))2Γ(r1 +1+ k)Γ(r2 +1+ j)Γ(r1 + r2 +n)
(Γ(n− r3))2Γ(r1 +1)Γ(r2 +1)Γ(r1 + r2 +n+ k+ j)Γ(k+1)Γ( j+1)

pk
1

k!
p j

2
j!

(3.11)

=
ΓnΓ(r1 +1)Γ(r2 +1)

Γ(n+ r1 + r2)
pr1

1 pr2
2 pn

3

× F(((n− r3)(k+ j))
2,(r1 +1)k,(r2 +1) j;(r1 + r2 +n)k+ j,(1)k,(1) j; p1, p2)

Hence proved.

Krishna and Pundir(2009) obtained MLE of p1,p2 and p3 as

p̂1 =
s1

n+ s1 + s2
, p̂2 =

s2

n+ s1 + s2
, p̂3 =

n
n+ s1 + s2

(3.12)

By invariance property, MLE of pr1
1 pr2

2 pr3
3 is

̂pr1
1 pr2

2 pr3
3 =

sr1
1 sr2

2 sr3
3

(n+ s1 + s2)r1+r2+r3
(3.13)
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Theorem 3.3 Variance of MLE of p1
r1 p2

r2 p3
r3=

∞

∑
s1=0

∞

∑
s2=0

(
sr1

1 sr2
2 nr3

(n+ s1 + s2)r1+r2+r3

)2(s1 +n−1
s1

)(
s1 + s2 +n−1

s2

)
pr1

1 pr2
2 pn

3

−

(
∞

∑
s1=0

∞

∑
s2=0

sr1
1 sr2

2 nr3

(n+ s1 + s2)r1+r2+r3

(
s1 +n−1

s1

)(
s1 + s2 +n−1

s2

)
pr1

1 pr2
2 pn

3

)2

(3.14)

Thus Mean Square Error(MSE) of p̂r1
1 p̂r2

2 p̂r3
3 =

V (p̂r1
1 p̂r2

2 p̂r3
3 )+Bias(p̂r1

1 p̂r2
2 p̂r3

3 )
2 (3.15)

4. Estimation of Reliability Functions

The reliability function is given by R(x,y) = P(X ≥ x,Y ≥ y)

R(x,y) = 1 ; x = 0, y = 0

= (
p1

1− p2
)x ; x = 1,2,3, ...; y = 0

(4.1)

= (
p2

1− p1
)y ; x = 0; y = 1,2,3, ...

(4.2)

= (
p1

1− p2
)x +(

p2

1− p1
)y +

x−1

∑
r=0

y−1

∑
s=0

(
r+ s

r

)
pr

1 ps
2 p3−1 ; x = 1,2,3, ...; y = 1,2,3, ...

(4.3)

Consider (
p1

1− p2

)x

= px
1

∞

∑
j=0

(
j+ x−1

x−1

)
p j

2

By putting r1 = x; r2 = j and r3 = 0 in (3.1) the UMVUE of (4.1) is

=
s2

∑
j=0

(
j+ x−1

x−1

)(
s1 +n− x−1

s1− x

)(
s1 + s2 +n− x− j−1

s2− j

)
(

s1 +n−1
s1

)(
s1 + s2 +n−1

s2

) (4.4)
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By using (2.1) , (4.4) becomes =

(
s1

x

)
(

s1 +n−1
x

) (4.5)

Similarly UMVUE of (4.2) becomes =

(
s2

y

)
(

s2 +n−1
y

) (4.6)

Using (3.1), UMVUE of (4.3) is =

(
s1

x

)
(

s1 +n−1
x

) +

(
s2

y

)
(

s2 +n−1
y

)

+
x−1

∑
r=0

y−1

∑
s=0

(
r+ s

r

)(
s1 +n− r−2

s1− r

)(
s1 + s2 +n− r− s−2

s2− s

)
(

s1 +n−1
s1

)(
s1 + s2 +n−1

s2

) −1

(4.7)

Using Theorem (3.2)

The Variance of (4.5) =
(

p3

(1− p2)

)n( p1

(1− p2)

)x 1(
n+ x−1

x

)
× 3F2(x+1,n,n;x+n,1;

p1

(1− p2)
)− (p2x

1 (1− p2)
−2x)

(4.8)

The Variance of (4.6) =
(

p3

(1− p1)

)n( p2

(1− p1)

)y 1(
n+ y−1

y

)
× 3F2(y+1,n,n;y+n,1;

p2

(1− p1)
)− (p2y

2 (1− p1)
−2y) (4.9)

Variance of (4.7) =V (A+B+C−1)

=V (A)+V (B)+V (C)+2cov(AB)+2cov(BC)+2cov(AC) (4.10)
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where

A =

(
s1

x

)
(

s1 +n−1
x

)

B =

(
s2

y

)
(

s2 +n−1
y

)

C =
x−1

∑
r=0

y−1

∑
s=0

(
r+ s

r

)(
s1 +n− r−2

s1− r

)(
s1 + s2 +n− r− s−2

s2− s

)
(

s1 +n−1
s1

)(
s1 + s2 +n−1

s2

) −1

To obtain (4.10) we require E(C2), E(AB), E(AC), E(BC)

E(C2) =
x−1

∑
r=0

y−1

∑
s=0

(
r+ s

r

)
(

r+ s+n−1
n−1

) pr
1 ps

2 pn
3

× F(((n−1)a+b)
2,(r+1)a,(s+1)b;(r+ s+n)a+b,(1)a,(1)b; p1, p2)

+ 2
x−1

∑
r=0

y−1

∑
s=0

x−1

∑
k=0

y−1

∑
l=0

(
(k+ l)

l

)(
r+ s+n− k− l−2

s− l

)(
r+n− k−2

r− k

)
(

r+ s+n−1
s

) pr
1 ps

2 pn
3

× F((β )a+b,(n−1)a+b,(s+1)b,(γ)a,(r+1)a;(r+ s+n)a+b,(δ )b,(γ)a,(θ)a; p1, p2)

(4.11)

where (r,s) 6= (k, l) and s1− r = a and s2− s = b and

β = (r+ s+n− k− l−1), γ = r+n− k−1, δ = s− l +1, θ = r− k+1

E(AB) =

(
x+ y+n−1

y

)
(

y+n−1
y

) px
1 py

2 pn
3 F((x+ y+n)a+b,(x+1)a,(n)b;(x+n)a,(y+n)b; p1, p2)

(4.12)
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E(AC) =
x−1

∑
r=0

y−1

∑
s=0

(
r+ s

r

)(
r
x

)
(

r+n−1
x

) pr
1 ps

2 pn
3

(1− p2)n−1

× 3F2((r+1),(r+n− x);(r− x+1),(r+n);
p1

(1− p2)
) (4.13)

E(BC) =
x−1

∑
r=0

y−1

∑
s=0

(
r+ s

r

)(
s
y

)
(

s+n−1
y

) pr
1 ps

2 pn
3

(1− p1)n−1

× 3F2((s+1),(s+n− y),(n−1);(s− y+1),(s+n);
p2

(1− p1)
) (4.14)

T he MLE o f (4.1) =
(

s1

(n+ s1)

)x

(4.15)

T he MLE o f (4.2) =
(

s2

(n+ s2)

)y

(4.16)

T he MLE o f (4.3) =
(

s1

(n+ s1)

)x

+

(
s2

(n+ s2)

)y

+
x−1

∑
r=0

y−1

∑
s=0

(
r+ s

r

)
sr

1 ss
2 n

(n+ s1 + s2)r+s+1 −1(4.17)

Variance of (4.15) =
n

(n+1)2x

(
p1

1− p2

)(
p3

1− p2

)n

× 4xF4x−1((n+1)2x+1,(2)2x−1;(n+2)2x,(1)2x−1;
p1

1− p2
)

− n2

(n+1)2x

(
p1

1− p2

)2( p3

1− p2

)2n

×
(

2xF2x−1((n+1)x+1,(2)x−1;(n+2)x,(1)x−1;
p1

1− p2
)

)2

(4.18)

Variance of (4.16) =
n

(n+1)2y

(
p2

1− p1

)(
p3

1− p1

)n

× 4yF4y−1((n+1)2y+1,(2)2y−1;(n+2)2y,(1)2y−1;
p2

1− p1
)

− n2

(n+1)2y

(
p2

1− p1

)2( p3

1− p1

)2n

×
(

2yF2y−1((n+1)y+1,(2)y−1;(n+2)y,(1)y−1;
p2

1− p1
)

)2

(4.19)
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Variance of (4.17) =V (A′+B′+C′−1)

=V (A′)+V (B′)+V (C′)+2cov(A′B′)+2cov(B′C′)+2cov(A′C′) (4.20)

where

A′ =
(

s1

(n+ s1)

)x

B′ =
(

s2

(n+ s2)

)y

C′ =
x−1

∑
r=0

y−1

∑
s=0

(
r+ s

r

)
sr

1 ss
2 n

(n+ s1 + s1)r+s+1 −1

To obtain (4.20) we require E(C’),E(C′2),E(A’B’),E(A’C’),E(B’C’)

E(C′) = pn
3F(((n)(s1+s2))

2;(n+1)(s1+s2); p1, p2)

+
y−1

∑
s=1

n2 p2 pn
3

(n+1)s+1 F(((n+1)ξ )
s+2, [(2)s2−1]

s−1; [(n+2)ξ ]
s+1, [(1)s2−1]

s−1; p1, p2)

+
x−1

∑
r=1

n2 p1 pn
3

(n+1)r+1 F([(n+1)α ]
r+2, [(2)s1−1]

r−1; [(n+2)α ]
r+1, [(1)s1−1]

r−1; p1, p2)

+
x−1

∑
r=1

y−1

∑
s=1

(
r+ s

r

)
p1 p2 pn

3
n2(n+1)

(n+2)r+s+1

× F([(n+2)λ ]
r+s+2, [(2)s1−1]

r−1, [(2)s2−1]
s−1; [(n+3)λ ]

r+s+1, [(1)s1−1]
r−1, [(1)s2−1]

s−1; p1, p2)

(4.21)

where

λ = (s1−1)+(s2−1),α = (s1−1)+ s2, ξ = s1 +(s2−1)
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E((C′)2) = pn
3F([(n)s1+s2 ]

3;((n+1)s1+s2)
2; p1, p2)

+
y−1

∑
s=1

n3 p2 pn
3

(n+1)2s+2

× F([(n+1)ξ ]
2s+3, [(2)s2−1]

2s−1;((n+2)ξ )
2s+2, [(1)s2−1]

2s−1; p1, p2)

+
x−1

∑
r=1

n3 p1 pn
3

(n+1)2r+2

× F([(n+1)α ]
2r+3, [(2)s1−1]

2r−1;([(n+2)α)
2r+2], [(1)s1−1]

2r−1; p1, p2)

+
x−1

∑
r=1

y−1

∑
s=1

(

(
r+ s

r

)
)2 p1 p2 pn

3
n2(n+1)

(n+2)2r+2s+2

× F([(n+2)λ ]
τ+1, [(2)s1−1]

2r−1, [(2)s2−1]
2s−1; [(n+3)λ ]

τ , [(1)s1−1]
2r−1, [(1)s2−1]

2s−1; p1, p2)

+ 2
x−1

∑
r=1

y−1

∑
s=1

x−1

∑
k=1

y−1

∑
l=1

(

(
r+ s

r

)
)(

(
k+ l

k

)
)p1 p2 pn

3
n3(n+1)

(n+2)r+s+k+l+2

F([(n+2)λ ]
µ+3, [(2)s1−1]

ζ , [(2)s2−1]
σ ; [(n+3)λ ]

µ+2, [(1)s1−1]
ζ , [(1)s2−1]

σ ; p1, p2)

+ 2
x−1

∑
r=0

x−1

∑
k=0

p1 pn
3

n3

(n+1)r+k+2

F([(n+1)(s1−1)+s2 ]
r+k+3, [(2)s1−1]

ζ ; [(n+2)(s1−1)+s2 ]
r+k+2, [(1)s1−1]

ζ , ; p1, p2)

+ 2
y−1

∑
s=0

y−1

∑
l=0

p2 pn
3

n3

(n+1)s+l+2

F([(n+1)ξ ]
s+l+3, [(2)s2−1]

σ ; [(n+2)ξ ]
s+l+2, [(1)s2−1]

σ , ; p1, p2)

(4.22)

where

λ = (s1−1)+(s2−1), τ = 2r+2s+2, , µ = r+ s+ k+ l, ζ = r+ k−1, σ = s+ l−1

and (r,s) 6= (k, l)

E(A′B′) =
n

φ (x+y−1) p1 p2 pn
3 (4.23)

× F((φ +1)λ [φψ ]
x, [(2)ψ ]

x−1, [(1)χ ]
y−1; [(φ +1)ψ ]

x, [(φ +1)χ ]
y, [(1)ψ ]

x−1, [(1)χ ]
y−1; p1, p2)

where

ψ = s1−1,χ = s2−1,φ = n+1
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E(A′C′) =
x−1

∑
r=0

n2

(n+1)r+x+1 p1 pn
3

× F([(φ)α)]
r+2, [(n+1)ψ ]

x, [(2)ψ ]
x+r−1; [(n+2)α ]

r+1, [(n+2)ψ ]
x, [(1)ψ ]

x+r−1; p1, p2)

+
x−1

∑
r=0

y−1

∑
s=1

(
r+ s

r

)
n2

(n+1)x−1(n+2)ω
p1 p2 pn

3

× F((n+2)ω+1
λ

[(φ)ψ ]
x, [(2)ψ ]

ϕ , [(2)χ ]
s−1; [(n+3)λ ]

ω , [(n+2)ψ ]
x, [(1)ψ ]

ϕ , [(1)χ ]
s−1; p1, p2)

(4.24)

where

ϕ = x+ r−1,ω = r+ s+1,Ω = s+ y−1

E(B′C′) =
y−1

∑
s=0

n2

(n+1)y+s+1 p2 pn
3

× F([(φ)ξ ))]
s+2, [(φ)χ ]

y, [(2)χ ]
Ω; [(n+2)ξ ]

s+1, [(n+2)χ ]
y, [(1)χ ]

Ω; p1, p2)

+
x−1

∑
r=1

y−1

∑
s=0

(
r+ s

r

)
n2

(n+1)y−1(n+2)ω
p1 p2 pn

3

× F((n+2)ω+1
λ

[(φ)χ ]
y, [(2)χ ]

Ω, [(2)ψ ]
r−1; [(n+3)λ ]

ω , [(n+2)χ ]
y, [(1)χ ]

Ω, [(1)ψ ]
r−1; p1, p2)

(4.25)

5. Conclusion : Comparision of UMVUE and MLE

In order to get an idea of the efficiency of the two types of estimation,MLE and UMVUE, we have
calculated the MSE of both the estimators for
1. Estimation of pr1

1 pr2
2 pr3

3 for various values of r1,r2 and r3.
We have depicted the same with graphs (Fig1and 2) done below for pr1

1 pr2
2 pr3

3 when
r1 = 1,r2 = 0 and r3 = 0 for p1 values ranging from 0.1 to 0.8.
2. Estimation of reliability function R(x,y) for different values of X and Y such as X,Y =1,2 and for
p1, p2 and p3 values ranging between 0.1 and 0.8.
From the graphs of MSE of MLE and UMVUE of p1 and of reliability function for various cases
drawn in Figs 1-10 we observe that for some cases UMVUE is more efficient and for some cases
MLE is more efficient. It is also observed that as n increases MSE of UMVUE and MLE tends to 0
for all cases. Hence we can conjecture that the UMVUE and MLE estimates are consistent.
Further Fig 1 and 2 compares the MSE of UMVUE and MLE of p1. When the value of p1 is ≥ 0.5
the MSE of UMVUE of p1 is less than the MSE of MLE of p1.When p1 values are < 0.5 the MSE
of UMVUE of p1 is greater than the MSE of MLE of p1. We have verified for the MSE of MLE
and UMVUE of p2 and p3 for values of p1, p2 and p3 ranging from 0.1 to 0.8.The same pattern, as
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seen for p1, is observed for p2 also. However the reverse occurs for p3.When the values of p3 are
≥ 0.5 the MSE of UMVUE of p3 is greater than the MSE of MLE of p3. When p3 values < 0.5 the
MSE of UMVUE of p3 is less than the MSE of MLE of p3.
Thus we observe that in certain cases UMVUE is a better choice and in other cases MLE is better
with respect to MSE of the estimator obtained. UMVUE is the best among the class of unbiased
estimators. If it attains Cramer Rao (CR) lower bound, then it is the best estimator. In the above case
UMVUE does not attain CR lower bound. Due to this it is quite likely that MLE might be a better
estimator and hence there is a need to consider the MLE.
The graphs of MSE of MLE and UMVUE for reliability function are drawn in Figs 3-10. It is
observed that in some cases UMVUE is more efficient and for some cases MLE is more efficient.For
example when p1 = 0.5 ; p2 = 0.4; p3 = 0.1 the UMVUE estimates are better than the MLE esti-
mates.
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Fig. 1.
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Fig. 2.
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Fig. 3.
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Fig. 4.
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Fig. 5.
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Fig. 6.
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Fig. 7.
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Fig. 8.

Published by Atlantis Press
Copyright: the authors

344



U.J. Dixit and S. Annapurna

Fig. 9.
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Fig. 10.
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6. Example from Cricket’s Indian Premium League(IPL2014)

Consider the 2014 season of Cricket’s Indian Premium League.(IPL 2014). A total of 154 players
from around the world were chosen to participate as member of any one of the 8 playing teams. The
first match played by every batsman was considered. A total of 98 batsmen became out during the
course of the first match that they played. Data was collected from the ball by ball account of each
of these 98 batsmen till they became out.
From this it was possible to obtain
(i) total number of balls faced by each player till he was out.
(ii) Number of balls hit that went beyond boundary ( as a 4 or a 6) prior to being out
(iii) Number of balls hit that did not go to boundary prior to being out.
Let
X : The number of balls hit by a player that went beyond boundary( ie a 4 or 6) till he was out.
Y: The number of balls hit by a player that did not go beyond boundary till he was out.
Hence p1=P( Player hit a ball that went beyond boundary) ,p2=P(Player hit a ball that did not go
beyond boundary and he was not out) and p3=P( He hit a ball and was out).

Table 1. IPL 2014

X/Y 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 TOTAL
0 7 12 8 1 4 2 3 7 4 1 2 2 1 0 1 1 0 0 0 0 56
1 2 3 3 0 1 1 2 1 2 2 1 2 0 0 0 0 0 0 0 2 22
2 0 0 0 0 0 0 1 1 1 0 0 0 1 1 2 1 1 1 0 0 10
3 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 2
4 0 0 1 0 0 1 1 0 0 0 0 0 3 0 0 0 0 0 0 0 6
5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
7 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1
8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1

TOT 9 15 12 1 5 4 7 9 7 3 4 5 5 1 3 2 1 1 1 3 98

The following calculations have been made from the above table.

Table 2. Result

MVUE MLE
p1 0.10847 0.108343
p2 0.77057 0.769613
p3 0.120947 0.1220423

Table 3. Result for Reliability Function when X=1,Y=1

MVUE MLE
1 0.472826 0.47027027
2 0.86433 0.86312849
3 0.45810938 0.4554411031
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Table 4. Result for Reliability Function when X=1,Y=2

MVUE MLE
1 0.472826 0.47027027
2 0.7469119 0.7449907
3 0.4340009 0.43122889

Table 5. Result for Reliability Function when X=2,Y=1

MVUE MLE
1 0.222202 0.22115413
2 0.86433 0.86312849
3 0.22062235 0.2195474801

Table 6. Result for Reliability Function when X=2,Y=2

MVUE MLE
1 0.222202 0.221154
2 0.7469119 0.7449907
3 0.21680711 0.215687648

From the example of IPL2014,it is observed that both the UMVUE and MLE
estimates calculated for p1,p2,p3 and for reliability function are very close to each other. In
Table2, p1 = P(The batsmen hits a 4 or 6)=Probability of a beyond boundary ball is 0.108. p2=
P( Batsmen does not hit a 4 or 6 and is not out) = Probability of a non-beyond boundary ball = 0.77
which is larger than p1. The probability p3 =P(Batsmen hits and is out) is very low and = 0.12.
When we consider the reliability functions in Table 3,the probability of batsmen hitting atleast
1 beyond boundary ball is 0.47 whereas the probability of his hitting atleast 2 beyond boundary
balls reduces to 0.222 as seen in Table 5.Similarly the probability of hitting atleast one non-beyond
boundary ball is 0.86 from Table 3 whereas the probability of hitting atleast 2 balls that are non
beyond boundaries reduces and is 0.75 from Table 4.
Finally the probability of hitting both i.e. atleast one beyond boundary ball and atleast one non-
beyond boundary ball is 0.45 from Table2. This probability is larger than the probability of hitting
atleast two balls that are beyond boundaries and atleast two that are non-beyond boundaries which
is 0.22 from table 5.This reduction in probabilities as X and Y values increase corresponds to what
actually happens in a game of cricket.
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