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Abstract 
In this paper, the time domain collocation method (TDC) is applied to solve the van der Pol 
equation. The results obtained by the TDC are compared with the results by the traditional harmonic 
balance method (HB) and high dimensional harmonic balance method (HDHB). For the extended 
TDC method, appropriately increasing the number of collocation points can significantly relive the 
nonphysical solution phenomenon and generate a better solution. Compared with the HDHB, the 
TDC method is derived more strictly, and more convenient to implement. Numerical results verify 
the simplicity, accuracy and efficiency of the present TDC method. 

Introduction 

For nonlinear problems, close form exact solution is rarely available. During the research of 
nonlinear phenomena, various approximate and numerical methods were proposed. Among the 
analytical methods, the perturbation method [1] has been dominating in solving nonlinear problems. 
But it still has some limitations. The harmonic balance method (HB) and high dimensional 
harmonic balance method (HDHB) [2-3] have achieved some success as alternative to time 
marching integration methods. However, the well known HB method suffers from its tedious 
symbolic operations required by processing the nonlinear term in system, and the HDHB method 
was hurt by its generating additional meaningless fake solutions. 

Dai, Schnoor and Atluri (2012) [4] have recently proposed a time domain collocation method, 
and applied it to solve the Duffing oscillator [Dai, Yue and Yuan (2013)] [5]. Compared with the 
other methods that have popularly used, such as the high dimensional harmonic balance method 
(HDHB) and the harmonic balance method (HB), it is shown that the TDC method is simpler and 
easier to implement. The TDC method avoids the symbolic calculations and also restrains the 
generation of fake solutions. 
 Herein we focus on solving the van der Pol oscillator by using the TDC method. The TDC 
solutions as well as the HDHB and HB solutions are derived for both the unforced and forced van 
der Pol oscillator. The structure of this paper is organized as follows. In Section 2, the time domain 
collocation method (TDC) as well as the extended TDC method is formulated to find periodic 
solutions. In Section 3, the results of TDC, HDHB and HB are displayed, and the comparisons 
between them are made for unforced and forced cases separately. Finally, we come to some 
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conclusions in Section 4. 

The methodology 

The time domain collocation method 
The van der Pol oscillator generally takes the form 

 2
1(1 ) cosx x x x F tα ω− − + =&& & . (1) 

For the case with no external force, i.e. 0F = , one obtains free oscillations. For the forced 
oscillator, i.e. 0F ≠ , forced oscillations will occur.  

Firstly, we start with an unforced van der pol oscillator. In this case, the periodic solution may 
be expressed as 
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= + +∑ , (2) 

which only contains the natural frequency ω . Here N is the number of harmonics used in the 

approximation, and 0 , ,  ( 1,  2,  , N)n nA A B n = … are the TDC solution coefficient variables. 

Then we can obtain the residual error function by substituting the approximate solution, the 
expression (2), into the following equation  

 2( ) (1 ) 0R t x x x xα= − − + ≠&& & . (3) 

To obtain the periodic solution of the van der Pol oscillator, we enforce ( )R t  to be zero at 

2N+1 points, which are equally spaced in a period of the oscillator. The points are chosen as  

 2( 1) / ((2 1) ) ( 1,  ,  2 1)it i N i Nπ ω= − + = … + . (4) 

Thus we obtain a system of 2N+1 nonlinear algebraic equations:  

 2( ) (1 ( )) ( ) ( ) 0i i i i i iR x t x t x t x tα= − − + =&& & , (5) 

which is named the TDC algebraic system for the periodic solution. 
According to the expression (2), we have 
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Thus we can derive the Jacobian matrix J  to the algebraic system  
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Thereby, the coefficient variables ,n nA B  can be determined by the Newton-Raphson method. 

For the forced van der Pol oscillator, the motion is more complex. Both the fundamental 

frequency ω  and the external forcing frequency 1ω  contribute to the oscillation. Thus these two 

general incommensurate reference frequencies are included in the approximate solution. So the 
following truncated Fourier series is used. 

 , 1 , 1
0

( ) ( cos( ) sin( ) )
N M

n m n m
n m M
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= =−

= + + +∑ ∑ , (8) 

Similar to the unforced system, by collecting 2(N+1)(2M+1) points in a period T of forced van 
der Pol oscillator, we get a system of 2(N+1)(2M+1) nonlinear algebraic equations. 
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Considering the expression (8), we have 
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Jacobian matrix J  of system (9) can be obtained. 
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Then the Newton-Raphson method or the novel globally optimal iterative algorithm (GOIA) can 
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help us determine the coefficients ,n mx and ,n my . The GOIA method is based on the concept of best 

decent vector u  which takes the form of T
cu F B Fα= + . It is proposed to solve a system of 

nonlinear algebraic equations (NAEs) without inverting the Jacobian matrix at each step. For more 

details of GOIA, refer to Liu and Atluri (2012) . 

The extended time domain collocation method 
In the previous subsection, we have shown how to implement the TDC method. To obtain a good 
prediction, the number N of harmonics in the trial solution should be big enough. When N is small, 
the results may not be up to our expectation. To improve this, we can use more collocation points K 
than 2N, where N is the number of harmonics included in the TDC analysis. For example, when 
solving the unforced van der Pol oscillator, K points are used to build a TDC resulting system of K 
equations, 2K N> .  
 Since the number of equations outnumbered the number of unknowns, we seek to minimize the 

function 2

1

K

i
i

f R
=

= ∑ . Thus we require 

 
1

2 0
K

i
i

ij j

Rf R
x x=

∂∂
= =

∂ ∂∑ . (12) 

It can be written in a vector form: 

 T= =Fx J R 0 , (13) 

where  
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M
R , and J  be the Jacobian matrix of R . 

To solve Eq. (13), we need to find the explicit expression for the Jacobian matrix B  of the system. 
It can be easily obtained in a way like this: 
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As iR  converges to zero during the iteration, the second term at the right hand of Eq. (15) becomes 

useless. So we neglect it and Eq. (15) reduces to 

 T=B J J . (16) 

In subsection 2.1, we have obtained R  and J  for the original TDC method, thus Fx  and B  
can be obtained conveniently. Then we can use the Newton-Raphson or GOIA method to solve the 
NAEs. 

Results and discussion 

The unforced oscillator 
Using a classic numerical integration scheme known as Runge-Kutta method, we get the time 

marching solution of the oscillator which serves as the benchmark solution. Figure 1 shows the 
frequency results from the HB method with various numbers of harmonics, in comparison with the 
time marching solution for α up to 5.0. 

 
Fig. 1. Comparisons of the fundamental frequency ω  versus the non-linearity coefficient α for the 
unforced oscillator. Solid line: HB solutions with various numbers of harmonics; open circle: time 
marching results. 

The trouble in implementing HB method is to find the analytical expressions for the nonlinear 

functions ir  and is . In this study, we used Mathematica to calculate them. 

Figure 1 shows that as the number of harmonics increases, the results from the HB method do 
have an excellent agreement with the time marching solution.  

In Section 2, The NAEs of different methods for solving van der Pol oscillator have been given. 
To solve them, the initial values for Newton iterative process have to be selected carefully, because 
improper initial values will direct the algebraic system to undesired solutions. Thus in the following 
discussions, the HB solutions are used to provide the initial values for TDC and HDHB method.  

The HDHB3 and HDHB4 solutions are displayed in Fig. 2 denoted by plus and filled dot 
separately. We can see that HDHB4 curve follows the time marching solution a little far beyond the 
HDHB3 solution, thus the even harmonics are not sufficiently small to be neglected. The higher 
order HDHB solutions will also prove that. 
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Fig. 2. For the unforced oscillator, the frequency results from the HDHB method, in comparison 

with the time marching results: HDHB results with three harmonics (plus) and four harmonics 
(filled dot); open circle: time marching results. 

To get a better approximation by HDHB method, we increase the number of harmonics. The 
results are shown in figure 3. 

 
 (a) (b) 
Fig. 3. For the unforced oscillator, the frequency results from the HDHB method, in comparison 
with the results from the time marching and the HB methods: (a) HDHB results with five harmonics 
(cross) and six harmonics (square); (b) HDHB results with seven harmonics (triangle). Solid line: 
HB solutions; open circle: time marching results. 
 As we can see in Fig. 3 (a), the frequency response curve from HDHB6 follows the time 
marching solution for a longer distance than the HDHB5. Thus the statement above is confirmed. 

In Fig. 3 (b), we find the HDHB7 solution follows the HB3 solution even after the HB3 curve 
deviates from the time marching results. According to the article of Liu, Dowell and Hall (2006) [2], 
it is concluded that the HDHB2n+1 results have the same accuracy as the HBn results. However, 
this statement is not absolutely right. Actually, as the number of harmonics used in the HB analysis 
increases, it becomes harder and harder for the results from HDHB2n+1 to follow the HBn results.  
 Then we increase the number of collocation points in TDC analysis, thus we can obtain the 
results of the extended TDC method. 
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 (a) (b) 
Fig. 4. For the unforced oscillator, the results from the extended TDC method, in comparison with 
the results from the time marching and the HDHB results: (a) three harmonics, nine collocation 
points; (b) four harmonics, eleven collocation points. Solid line: TDC results; plus: HDHB results; 
open circle: time marching results. 
 In this study, TDCn_m refers to the TDC method with n harmonics and m collocation points. 
The results from TDC3_9 and TDC4_11, which are denoted by solid lines, are displayed in Fig. 4 (a) 
and (b) respectively. Compared with the HDHB solutions (denoted by the plus), the extended TDC 
curve can follow the time marching results for a larger value of α . In Fig. 4 (a), the TDC3_9 curve 
matches well with the time marching results until 0.6α >  As to the TDC4_11 curve, we can see 
that in Fig. 4 (b), it keeps very close to time marching results even when 1.0α = . Therefore, the 
extended TDC method yields better results than the HDHB method.  

However, to the higher order results of TDC method, the increase of the number of collocation 
points does not improve the accuracy obviously, because the number of harmonics itself is large 
enough to provide a sufficiently accurate solution. When the number of collocations approaches 
infinity, the least square method is obtained. 

The results demonstrated above are all generated by frequency matching procedure. That is, at 
each step, the previous solution is employed as the initial condition for the next step. And the 
original initial value is provided by the HB method. Here, we provide another way for the initial 
value generation. Through Monte Carlo simulation, the initial values are randomly generated for a 
large number of computations. As the Newton or GOIA method is sensitive to initial values, the 
extended TDC method will provide a lot of different results with all the initial values. However, as 
the number of collocation points increases, the results will converge to several particular solutions.  
The forced oscillator 
 To check the practicability of TDC method in the forced case of van der Pol oscillator, the TDC 
solution is also derived. The phase plane for the motions resumed from the TDC solution is plotted 
in Fig. 5 (a), in comparison with the HB solution, which is plotted in Fig. 5 (b). 
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(a) (b) 

Fig. 5. For the forced oscillator, the phase planes resumed from the TDC and HB solutions 
The approximate solution takes the form 

 
1 1

, 1 , 1
0 1
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We can use the TDC scheme proposed in Section 2 to determine the coefficients ,n mx and ,n my . 

It needs to be noticed that the values of period T and the number of collocation points can be chosen 
separately. Since the motion of the forced oscillator looks like ‘mild’ chaos, the period of the 
oscillator is uncertain to us. Thus a good choice of the ‘period’ T and the number of collocation 
points K is necessary to a good prediction. After numerous numerical simulations, we do find that 
some combinations of T and N give good results. In Fig. 8, we choose T=33, and K=11. The 

harmonicsω , 1ω , and 1ω ω± are included. As we can see, the TDC solution matches well with the 

HB solution. Except for that, some other combinations of T and N can also provide reasonable 
results, e.g. T=23, K=11; T=39, K=13, etc. 

Conclusions 

In this paper, the time domain collocation (TDC) method is applied to solve the van der Pol 
oscillator. By enforcing the residual error to be zero at discrete time intervals on a period of the 
oscillator, the resulting nonlinear algebraic equations of TDC method can be easily obtained. Then 
the resultant NAEs were solved by the Newton-Raphson method or GOIA method. Unlike the 
HDHB method, there is no need to do the Fourier transformation in the implementation of TDC 
method. It makes TDC method simpler than HDHB method, and reduces the computational cost.  

Then the TDC solutions are compared with the results obtained from HDHB, HB and time 
marching methods. For the unforced van der Pol oscillator, it is demonstrated that the original TDC 
method gives the same results of HDHB method, while the extended TDC method remarkably 
improved the approximation when the number of harmonics included in the analysis is small. For 
the forced van der Pol oscillator, we compared the results of TDC method and HB method. We find 
that in the forced case, the implementation of TDC method is a little complex because of the 
quasi-periodic motion of the trajectory. When sufficient terms of those two frequencies are included, 
we can obtain some reliable results at some combinations of time interval T and number K of 
collocation points. 
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