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Abstract.  Considering the parameter uncertainties, model inaccuracies and external disturbances in 
the servo-system, it is difficult to achieve an ideal performance of the conventional sliding mode 
controller (SMC), so we designed a robust adaptive global sliding mode controller (RA-GSMC) by 
constructing a global sliding mode function and an adaptive law, which can enable the system to reach 
the sliding mode surface at the very beginning and move along the surface until the end. Moreover, the 
adaptive law estimates the system lump uncertainty so as to amend the control law output, which 
enables the perfect control of the system. Simulation demonstrates the validity of the control scheme. 

Introduction 
It is well known that SMC control scheme is widely used in control fields owing to its effectiveness in 
dealing with system parameter uncertainties, nonlinearities and external disturbances. Generally, SMC 
is designed to make all the state variables move toward a pre-specified sliding surface, once the system 
reaches the destined sliding surface, it will move along this surface till the system stable state. 
The conventional SMC scheme includes reaching phase and sliding mode phase, and the former can 
reduce the robustness of the system. Therefore, how to reduce the reaching phase is considered most 
important. In [1], the reaching phase was shortened by proposing a piecewise-constant moving 
switching surface, which made the designed SMC system insensitive to the parameter uncertainties and 
external disturbances in the reaching phase. Reference [2] described the system tracking errors by 
getting rid of the time-dependent parameter from the original tracking error, which eliminated the 
reaching phase and made the tracking error become zero from the original state. A time-varying 
switching plane is adopted to eliminate the reaching phase for nonlinear systems with parameter 
uncertainty and external disturbances [3], and uses a type-2 fuzzy system to estimate the unknown 
system factors [3, 4]. References [5, 6] designed the SMC using an adaptive switching gain to maintain 
the system response, and alleviated any effects caused by disturbances and uncertainties. Furthermore, 
super-twisting SMC design methods were studied for the linear and time invariant uncertain system by 
adjusting variable gains of the algorithm and updating the slope of the sliding surface via fuzzy logic 
schemes [7, 8]. As a result, the robustness is guaranteed and the dynamic performance is improved.  
    In order to eliminate the reaching phase in conventional SMCs, the global sliding mode controller 
(GSMC) has became a prevailing technology being researched, which ensures the system has a sliding 
mode in the entire process [9-12]. REA-GSMC was designed by defining a sliding mode function as an 
exponential type, and finishing the tracking control for a two-link robot manipulator [9]. A generalized 
GSMC based on REA-GSMC was then devised, which enhanced the robustness and performance in 
decreasing the bad influences caused by the uncertainties [10]. Reference [12] brought forward a 
method of the global sliding mode function with an integral expression, and gave detailed design steps 
of the GSMC. With the continuous development of GSMC, the combination of GSMC with other 
methods arose. Moreover, [11] carried out the design of discrete GSMC for the discrete SISO system, 
the discrete reaching law is provided, and the stability is analyzed. 

In the GSMC system, the reaching phase has been removed by the global sliding mode function, 
which enables the system to arrive at the sliding mode condition from the beginning. However, for 
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systems with parameter uncertainties, nonlinearity and external disturbances, which decrease the 
robustness of the control system, it is advisable to design a controller which has the ability to estimate 
the system lumped uncertainty. So, as for the SISO nonlinear uncertain servo-system, we design a 
robust adaptive-GSMC scheme.  

System Description 
Consider the following n-th order SISO nonlinear uncertain system: 

( ) [ ( )] ( ) [ ( )] ( ) ( )X t A At X t B B t U t f t= +∆ + +∆ +&                                                   (1) 
Where, the state parameter vector ( ) R nX t ∈ , control vector ( ) RU t ∈ , and the external 

disturbance ( ) R nf t ∈ , Rn nA ×∈ . Meanwhile, the vectors ( )At∆  and ( )B t∆  are parameter perturbation vectors, 
and ( )f t  is the system nonlinearities. 

Suppose the vectors ( )A t∆ , ( )B t∆  and ( )f t  are continuous functions, and the matching condition is 
( ) ( )A t BD t∆ = , ( ) ( )B t BH t∆ =  and ( ) ( )f t BL t= . 
Where, ( ) RnD t ∈ , ( ) RL t ∈ and ( ) RH t ∈ , while | ( )| 1H t < . Let ( )E t  be the lumped uncertainty including 

parameter perturbation, nonlinearity and external disturbances, which is bounded and unknown. 
  So, (1) of the system can be written in the following form:  

( ) [ ( )] ( ) [ ( )] ( ) ( )= ( ) ( ( ) ( ) ( )+ ( ) ( )+ ( ))= ( ) ( ( ) ( ))X t A A t X t B B t U t f t AX t B U t D t X t H t U t L t AX t B U t E t= + ∆ + + ∆ + + + + +&      (2) 
Where, ( ) ( ) ( )+ ( ) ( )+ ( )E t D t X t H t U t L t= . 

RA-GSMC Design 

Sliding Mode Function Design. According to the system, the defined tracking error is shown as: 
( ) ( ) ( )eX t R t X t= −                                                                     (3) 

where, ( ) RnR t ∈ is the target movement vector. Suppose the initial tracking error is (0)eX , we can get the 
global sliding mode function as the following equation:  

( ) ( ) ( ) (0)e es t CX t CM t X= −                                                             (4) 
where, [ ]1 2 1, , , , 1nC c c c−= L , is a sliding mode parameter vector, and 0ic > , 1,2, , 1i n= −L , meanwhile, we 
define the sliding mode moving parameter vector as: 

 1( ) [exp( ) , , exp( )]nM t diag t tβ β= − −L                                                    (5) 
where Re( ) 0, 1,2, ,i i nβ > = L . When 0t = , then (0) 0s = , and when t → ∞ , owing to lim ( ) 0et

X t
→∞

= , therefore, the 
equation [ ]lim ( ) lim ( ) ( ) ( ) 0e et t

s t CX t CM t X t
→∞ →∞

= − = , can be obtained. That means the system attains the sliding surface 
from the original state without the reaching movement, and maintains it until the end. Meanwhile, the 
favorable dynamic performance can be achieved by vectors C and ( )M t . 
Controller Design. In order to decrease or eliminate the chattering of the system, it is advisable to 
identify the bounded-unknown uncertainty of the system, so, an adaptive law was designed, which can 
adjust the control law automatically according to the uncertainty. Let ˆ( )E t  be defined as the evaluation 
of system uncertainty ( )E t . Thus, we get the following control law: 

1 ˆ( ) ( ) [ ( ) ( ) ( ) (0) ( ) ( )]eU t CB CR t CAX t CM t X CBE t s tσ−= − − − +& &                                                   (6) 
where, 1( ) ( ) [ ( ) ( ) ( ) (0)]eq eU t CB CR t CAX t CM t X−= − −& & , is an equivalent control item obtained by the equation ( ) 0s t =&  
without considering the parameter perturbation, system nonlinearity and external disturbances, which 
can make the system move along the sliding surface until the anticipated target is reached. Moreover, 
the 0σ > , is a given constant, and the adaptive law is described by  

1ˆ ( ) ( ).E t CBs tλ−= −&                                                                      (7) 
where,λ is a given positive constant. 

According to the designed control law, let the Lyapunov function candidate be defined as: 
2 21 1( ) ( ).

2 2
V t E ts λ= + %                                                                   (8) 

where, ˆ( ) ( ) ( )E t E t E t= −%  is the identification error of lumped uncertainty. Then the time derivative of V is 
2ˆ ˆ ˆ( ) ( ) ( ) ( ) ( )[ ( ) ( ) [ ( ) ( ) ( ) (0) ( ) ( )] ( ) ( ) (0)] ( ) ( ) ( )e eV s t s t E t E t s t CR t CAX t CR t CAX t CM t X CBE t s t CBE t CM t X E t E t s tλ σ λ σ= + = − − − − − + − − + = −& && % & & & & %&  (9)  
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So, we can obtain the result 2 0V sσ= − ≤& , the system is asymptotically stable controlled by the designed 
RA-GSMC algorithm. 

In order to illuminate the improved performance of the designed RA-GSMC, we contrast it against 
the conventional GSMC shown in (10). 

1( ) ( ) [ ( ) ( ) ( ) (0)] sgn( ( ))eU t CB CR t CAX t CM t X s tρ−= − − +& &                                            (10) 
where, 

 
1 if ( ) 0

sgn( ( )) 0 if ( )=0
1 if ( ) 0

s t
s t s t

s t

>
= 
− <

，

，

，
 ,                                                             (11) 

and ρ is the upper limit of ( )E t , | ( ) | 0E tρ ≥ > , the sgn( ( ))s tρ  part is a switching item, which can generate the 
sliding mode of the system. Moreover, the 1( ) [ ( ) ( ) ( ) (0)]eCB CR t CAX t CM t X− − −& & is an equivalent control item. 
    Let the Lyapunov function candidate be 21 ( )

2GSMCV ts= , then the time derivative of GSMCV is 
( ) ( )GSMCV s t s t=& & ( )[ ( ( ) ( )) ( ) (0)]es t C R t X t CM t X= − −& & & ( )[ sgn( ( )) ( )]s t CB s t C BE tρ= − − [ ( ) sgn( ( )) ( ) ( )]C B s t s t s t E tρ= − + . 

Owing to 0CB > , | ( ) | 0E tρ ≥ >  and ( )sgn( ( )) 0s t s t ≥ , so 0GSMCV ≤& , the system is asymptotically stable. 

Experiment 

Servo-system Description. Considering that the electro-hydraulic servo-system is a typical nonlinear 
system with parameter perturbation and external disturbances shown as Fig.1, we can define the system 
input signal vector and the system state vector as 1 2 3( ) [ ; ; ]R t r r r= and 1 2 3( ) [ ; ; ]X t x x x= respectively, meanwhile, 

2 1r r= & , 3 2r r= & , and 2 1x x= & , 3 2x x= & . 

 
Fig.1  Diagram of the control system 

   Where, 3 25.41 10F m−= ×  is the plunger area of the hydro-cylinder, ceK is the flow-pressure coefficient of 
proportional valve, sNmKce ⋅×= − /1016.5 511 . 28 /107 mN×=β  is the equivalent bulk modulus of hydraulic oil and 
tube wall, 3 31.4 10tV m−= ×  is the total volume of pipeline and oil reservoir on both sides of hydro-cylinder, 

100m kg=  represents the load mass. Moreover, P  means the load force, K  is the velocity gain of the 
valve-controlled hydro-cylinder, and hω , hξ are nature frequency and relative damping coefficient of 
hydro-cylinder respectively, meanwhile, 765 /h rad sω = , 0.07hξ = . So the system state matrix is shown as: 

1 1 1

2 2 2

3 2 1 3 20 20 10 10 3 0 0

0 1 0 0 0 0 1 0 0 0 0 1 0
( ) 0 0 1 0 ( ) 0 0 0 1 0 ( ) 0 0 0 1

0 0 ( ) ( ) 0L L

x x x
X t x x U t x U t

x a a x b f a a a a x b b f

               
               = = + + = + + =               
               − − − +∆ − +∆ +∆               

&
& &

&

1

2

20 10 3 0

0
0 ( ( ) ( ))

x
x U t E t

a a x b

    
    + +    
    − −    

         (1

2) 
where 10a , 20a and 0b  are the system nominal parameters, 10a∆ , 20a∆ and 0b∆ are system perturbations, and 

10 2 107.1n ha ξ ω= = , 2
20 585225ha ω= = , 2

0 114665hb Kω= = . Meanwhile, ( )E t is the lumped uncertainty, and Lf  is the 
disturbance can be written as:  

2

3 1 2 2 1 2 24
h ce t h

L
K Vf r a r a r P P

F F
ω ω

β
= + + + + && & & ,                                            (13)  

which is a continuous function, and P&  is the change rate of load force P . 
Simulation. According to the above nonlinear- uncertain servo-system, the tracking error is shown as 

[ ]1 1 2 2 3 3( ) ( ) ( ) , , T
eX t R t X t r x r x r x= − = − − − .                                        (14)  

We carry out the simulation by adopting the designed sliding mode function shown in (4) and the 
control law shown in (6). The sliding mode parameter vector C is designed by using the pole 
assignment method, where the vectors [ ]200,20,1C = , and [ ]10, 20,10β = . 

Meanwhile, we designed the parameters 50σ = , and 25000λ = . Suppose the initial state is ( ) [0;0;0]X t = . The 
step response of the RA-GSMC system are shown in Fig.2 in the circumstance of ( ) 0.5 sin(2 )E t tπ= .   
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   (a) Step response                                                           (b) Control law  
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 (c) Trajectories of E and evaluated E                              (d) Variables of the system   

   Fig.2 Step response results of RA-GSMC 

Fig.2 (a) to (d) show that the RA- GSMC algorithm have good control effects and dynamic 
performance, and can finish the exact estimation about the system uncertainty caused by the parameter 
perturbations and external load disturbances.Then, for contrast, the simulation results of the 
conventional GSMC are shown in Fig.3, where 0.5ρ = , is the maximum of system uncertainty.  
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          (a) Step response                              (b) Control law                         (c) Variables of the system 

Fig.3 Step response results of conventional GSMC   
From Fig.3 (a) to (c), it is clearly that the conventional GSMC system has chattering which can be 

alleviated in the RA-GSMC method. In order to further indicate the efficiency of RA-GSMC, ( )E t  is 
supposed a rectangle wave type signal, and the simulation results are shown in Fig.4. 
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      (a) Step response                            (b) Control law                (c) Trajectories of E and evaluated E 

Fig.4 Step response results of RA-GSMC while ( )E t is a rectangle wave signal   
Fig.4 (a) to (c) show that the RA-GSMC system has better performance to quick track the bounded 

and nonlinear system uncertainties, and ˆ( )E t can track and keep pace with ( )E t within about 0.18 
seconds, meanwhile, the control law is smooth and the position tracking is perfect. 

Conclusion 
This paper proposed a RA-GSMC for a SISO servo-system with bounded nonlinear uncertainty. The 
global sliding mode function can make the system on the sliding surface from the original state, and the 
adaptive law estimates the system uncertainties accurately, which indicates the system has ideal 
dynamic performances. The simulation results verify the validity of the designed control method. 
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