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Abstract. The effect of uncertainty and its evolution with time on the system reliability design are 
investigated in this paper. The system design variables are modeled in Geometric Brownian Motions 
which using the drift rate and diffusion rate to describe the evolution-based uncertainty of variables. 
Based on Ito Lemma, the system performance composed with these variables can also be expressed 
with drift function and diffusion function. Using mathematic transformation for the time series data of 
each variables, the drift function and diffusion function of the system can be calculated to reflect the 
system performance evolution uncertainty characteristic. The system evolution-based uncertainty 
reliability is defined as the probability function of system performance output and allowable 
performance output. Evolution-based uncertainty design method is developed in which the system can 
be designed with the specified reliability value at the given time period. The example results show the 
effectiveness of the proposed method on dealing with the system evolution-based uncertainty. 

Introduction 
In real world, human activities have involved the land, deep sea and extended to the outer space. A lot 
of artificial systems, such as nuclear power plant, offshore drilling platform, spacecraft and space 
station, have been invented to expand the scope of these human activities. Generally, these artificial 
systems are very complicated and possess multiple variables. The nonlinearity, uncertainty of the 
variables are mainly the characteristic of the complex system. The reliability problem of such artificial 
system is always concerned both in the engineering and academic research field. 

At present, the reliability design method is based on the probability theory in which the system 
variables (or parameters) are regarded as stochastic variable [1]. There exists two major problems: one 
is we need a large amount of data to determine the distribution and numerical characteristics of 
stochastic variables. Secondly, the reliability of system in this method doesn’t consider the system 
evolution-based uncertain factor [2].  

Many research works have been proposed for the time-dependent reliability analysis of the system. 
Monte Carlo Simulation (MCS) can be used for time-dependent reliability analysis, but it is 
computationally expensive. Method such as the upcrossing rate is the most widely used one [3~5]. 
However, it is not easy to obtain the upcrossing rate, some assumption or effective way is made to 
improve this method. Du has developed a more accurate method by combining the joint upcrossing rate 
with First Order Reliability Method (FORM) in literature [6]. Even so, there exist a lot of error sources 
in this method for accurately estimating the time-dependent reliability of system. 

In order to analyze the evolution-based uncertain factors on the system, Shi uses Ito process to 
describe the machine parts stress and strength, and proposed a method to calculate the mechanical 
system reliability incorporating time variation and uncertainty [7,8], but he didn’t use it for designing 
the system in the view of evolution-based uncertainty. 

At present, there is no related research work about how to design the system based on the evolution 
uncertain reliability. Unlike the traditional reliability design method, this paper proposes an 
evolution-based uncertain design (EBUD) method to investigate the uncertainty and time-dependent 
characteristic of the system. This method can forecast the reliability of artificial system at any time 
based on drift and diffusion characteristic of the basic design parameters. 
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Ito Process and Ito Lemma  
For a process xt whose state changes continuously with time, it can be described as Ito process: 

( , ) ( , )t t t tdx x t dt x t dwµ σ= +                                                         (1) 
where, wt is a Wiener process (Brownian motion), μ(xt ,t) drift function and σ(xt ,t) diffusion function. 
μ(xt ,t) and σ(xt ,t) are deterministic functions depending on xt and time t respectively. Different 
stochastic process will be generated if expressions of the drift function and diffusion function are 
different. 

If we know the stochastic process followed by x, Ito Lemma tells us the stochastic process followed 
by some function G(x, t). According to the derivative chain rule of random variables and stochastic 
calculus, Ito Lemma states that G(x, t) follows the Ito process: 
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Given a set of Ito processes xi (i=1,……,n): 
d ( ) ( , )d ( , )d , 1,2, , ; 1,2, ,i i t ir t rx t x dt t x t w i n r mµ σ= + = =L L                          (3) 

where, ( , )i tx dtµ  is drift function, and ( , )ir tx tσ  is a n×m correlated diffusion matrix. 
Using the Taylor’s series expansion of G(x, t) ( ignoring the terms of higher order than dt ), the 

multidimensional Ito Lemma can be written as follows： 
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General Principle of Evolution-Based Uncertainty Design (EBUD) 
In order to analyze the system evolution characteristic quantitatively, the system status can be 
described by its basic parameters, and it also can be the variables which are used in the system’s 
kinematic and dynamic equation. The status of artificial system is described by the system functional 
output or additional output, all of these is named as performance output of the system.  
Definition 
Performance output Freal (X, t): a status expression of artificial system S at any time t. It is a multivariate 
function of variables X and time t, where the variables X= [xi (t)]T( i=1,2……n), and xi (t) is an Ito 
process expressed in equation (1). For simplicity, Freal (X, t) is represented as F(t). Performance output 
F(t) of the system can be observable, and it may be a composite function composed of multi-observable 
physical quantities. 

Allowable performance output  Fallow (Y, t): it is also a multivariate function of variables Y and time 
t, where Y= [yi (t)]T (i=1,2……m), and yi (t)is an Ito process expressed in equation (1). For simplicity, 
Fallow (Y, t) is represented as [F(t)], which is an expression of performance (or status) requirement of 
system S at any time t. Allowable performance output can be some performance index of system S with 
actual physical significance. It also can be unobservable, abstract function composed of several 
observable physical quantities. 

Based on the above definitions, the performance (status) output F(t) and allowable performance 
output [F(t)] of the system will be time-dependent function which is composed of  design variables. 
Followings are some definitions of EBUD: 

EBUD focuses on the time-varying, evolution and uncertainty characteristics existing in the artificial 
system S. The quantification expression of the system uncertain or risky can be described by the 
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uncertainty/un-reliability, or by certainty/ reliability. Uncertainty and reliability of the system in the 
EBUD will be calculated with performance output and allowable performance output which are 
expressed by Ito process.  
Design guideline for EBUD 
For an artificial system, the state variable of the system can be considered as continuous stochastic 
processes. The system uncertainty at any time t will be resolved by the probability model which is 
determined by the relationship of actual performance output ‘value’ and the required ‘value’.  

The math expression of the system meeting the performance output F(t) is the inequality 
relationship between the performance output and allowable performance output. Its general expression 
can be described as follows:  

( ) ( )[ ]F t F t≤                                                              (5) 
If the system requires the performance output F(t) greater than or equal to the allowable 

performance output, equation (5) can be handled as this: 
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According to the above definition, the system reliability over a time interval [t0,ts] for the 
evolution-based uncertainty analysis can be written as: 

( ) ( ){ }0 0, ) , [ , ]( s st t t tP t P F t F t ∀ ∈= ≤                                             (7) 

For the performance output F (t) and allowable performance output [F (t)] can be expressed with 
Ito process, the reliability P (t0, ts) in equation (7) is a time-variant function. 

 
Drift function and diffusion function of system 
In the model of EBUD, the fluctuation of system is expressed with drift function. Drift function is used 
to describe the system’s variation.The uncertain characteristic of the system is expressed with diffusion 
function. It is used to describe the uncertainty of system behavior at any time. 

If the system S is composed of many subsystems, the performance output F(t) of the system will be 
composite functions of many variables which belong to these subsystems. According to 
abovementioned Ito Lemma, drift function μ (xt ,t) and diffusion function σ (xt, t) of performance 
output F(t) can be given by the subsystems’ drift function and diffusion function. 
l Drift function and diffusion function of lnF(t) 

If a variable follows a standard Weiner process, it has drift rate 0 and variance rate 1. For a 
generalized Wiener process, the variable xt is a generalized Wiener process with the following form: 

d d dt tx t wµ σ= +                                                       (8) 
where, μ and σ are some certain values, t is continuous time.   

Thus, based on Ito Lemma and literature [1] , we can prove that: 
( ) ( ) 2

0 0, Vart tE x x t x x tµ σ− = − =                                               (9) 
The results in equation (9) demonstrate that the xt-x0 in time interval [0, t] will follow the normal 

distribution N(μt, σ2t).  
For an artificial system with performance output F(t) ( an Ito process with the drift function μF, the 

diffusion function σF), if we set transformation G(F(t), t)=lnF(t), according to Ito Lemma in equation 
(2), it can lead to: 
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The equation (10) indicates that lnF(t) is a generalized Weiner process which follows a normal  
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distribution with mean ( ) ( )
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also means that the ln F(t) is an Ito process with drift function 2 / 2F Fµ σ−  , diffusion function σF. 
System reliability in EBUD 
As abovementioned, if the performance output F (t) of the system following the Ito process, according 
to equation (10), lnF (t) will follow a normal distribution. It is the same for the allowable performance 
output [F (t)], that is ln[F (t)] will also follow a normal distribution. 

In practical engineering application, in order to easily calculate the above reliability from the view 
point of EBUD, each item in the relationship (7) is taken logarithm simultaneously: 

( ) ( ){ } ( )( )0ln lnP F t F t F t >≤                                               (11) 

or   
( ) ( ){ } ( )( )' 0ln ' ln ' F tP F t F t >≤                                              (12) 

In EBUD, the system S with allowable performance output ln[F (t)] is designed which it should 
satisfy the equation (11) or (12).According to equation (11), the reliability of system varies with time t. 
It is defined by the probability that an Ito process ln F (t) is lower than another Ito process ln[F (t)]. 

As shown in Fig.1, the situation of ln F (t) larger than ln[F (t)] represents the system at this moment 
will be considered as unacceptable or having risk. Once the distribution and parameters of ln F (t) and 
ln[F (t)] are determined, the reliability R[t] can be calculated by estimating the probability X>Y as 
following: 
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where, Y=ln[F  (t)], f(Y) is the probability density function (pdf) of allowable performance output ln[F 
(t)] , and X=ln F  (t), f(X) is the probability density function (pdf) of performance output lnF (t). 

 
Fig.1 Evolution of interference model of system reliability 

However, it is difficult to obtain the probability density function of X=ln F(t), Y=ln[F (t)] at any 
time. As we know that ln F(t), ln[F (t)] follow normal distribution, the system reliability R (t) during 
time interval [t0 , ts] can be given: 
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and reliability index β(t): 
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 and variance ( )
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 of the performance output lnF(t) can be calculated by the 
drift function μF, the diffusion function σF. According to the multi-dimensional Ito Lemma (equation 
(4)), the drift function μF, the diffusion function σF of the performance output F(t) can be expressed 
with the variables xt

(i)(i=1⋅⋅⋅⋅⋅⋅n) of the system. The design variables xt
(i) all follows the Geometric 

Brownian Motion. If we design a system with the given reliability R(t) at specified time, the system 
performance output F(0) can be solved with equation (14).  

If the system is designed to have the reliability R (t)> R0 at time t=T,  the reliability index β(t) should 
meet β(t=T)>Ф-1(R0). For the reliability index β(t) is a time-dependent continuous function, it is easy to 
calculate reliability index β(t) over a time interval [0,T]. 
 

Estimation of Drift Rate λ and Variance δ based on Time Series Data 
If the variable x(t) follows the Geometric Brownian Motion, the drift rate λ and diffusion rate δ of 
variable x(t) can be obtained by related experiment data or operating data. 

For the n+1 observables value {x0,x1, ⋅⋅⋅⋅⋅⋅,xn} which sampling xt=x(t) at the time interval Δ=T-t, if 
qt=lnxt -lnxt-1, the mean and variance of the sampling data qt will be: 
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It can be seen in equation (16) that the drift rate and diffusion rate can be estimated from the mean 
and variance of the data series qt. For the multiple groups of sampling data, the estimated drift rate and 
diffusion rate can be achieved separately, and the average value of these estimated values will be 
regarded as the drift rate and diffusion rate of time-varying parameter. If we can get more sampling 
data of the variable x(t), the estimated drift rate /diffusion rate will be more close to their real values. 

Examples of EBUD 
The system S is composed of two sub-systems S1 and S2. The system S operates properly if S1 and S2 

working normally.  The performance output of system S1 is  S1=x1·x2, and the performance output of 
system S2 is S2 =x2/x3, where x1,x2 and x3 are the design variables respectively. The value of allowable 
performance output S1 and S2 at the initial time is [S1 (0)]=35, [S2 (0)]=35. 
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where the drift rate of allowable performance output [S1] and [S2]  are λ[S1]=-0.001, λ[S2]=-0.001, the 
diffusion rate δ[S1]=0.005, δ[S2]=0.005. 

For the x1 ,x2  and x3  are the design variables of system S, the drift rate and diffusion rate of variables 
are given as following respectively: 

x1：drift rate λ x1=0.002，diffusion rateδ x1=0.01; 

x2：drift rateλ x2=0.002 ，diffusion rateδ x2=0.01; 

x3：drift rateλ x3=0.0002 ，diffusion rateδ x3=0.02. 
To design the system S with the reliability R(t) no less than 64.72% at time t=100 hour, i.e. P{S(100)

≤ [S(100)]} no less than 64.72%. 
Solve: 
The reliability R(t) of  system S is the product of two subsystem reliability R1(t) and R2(t). 

Considering the subsystem S1 has more complicated structure, its reliability R1 can be lower, while the 
subsystem S2 can have a little higher reliability R2. We assigned the reliability R1(t) and R2(t) is about R1 
(100)=65%, R2 (100)=99.6%. 

The drift function μS1 and diffusion function σS1 of S1 can be given by Ito Lemma in equation (4): 
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Comparing the Ito process  with the Geometric Brownian Motion of variables x1, x2, we can get: 
μx1= x1(t)·λ x1 , μx2= x2(t)·λ x2 , σx1= x1(t)·δ x1 , σ x2= x2(t)·δ x2, μx3= x3(t)·δx3 , σx3= x3(t)·δx3.  

Using the expression of system S1, it will have: 
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We use trial and error method to calculate the variables x1, x2and x3 at initial time. First, assume that 
x1(0)=5, x2(0)=4 and x3(0)=0.2 thus S1 (0)=20,S2 (0)=20. 

The system S1 is an Ito process as equation (1) with drift rate λS1(t), diffusion rate δS1(t) : 
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Based on the knowledge in 2.3, it can lead to: 
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It means that 1Sln  will follow a normal distribution with mean ( )
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The reliability of R1 of the system S1 at time instant t=100h will be: 
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Same way to solve the system S2 ( Ito process): 
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( )3.0032 99.87%= Φ ≈                                                                               (22) 
The reliability R of the series system S can be verified that: 

( ) 1 2100 (t 100) (t 100) 0.6480 0.9987 64.72%R t R R= = = × = = × ≈                    (23) 
It means that the system S will have the reliability R  at the time moment t=100 hour. This designed 

system can meet the requirement of reliability. 
 

Conclusion 
The method of evolution-based uncertainty design (EBUD) for artificial systems is proposed in this 
paper considering the evolution and uncertain characteristics existing in the system. The performance 
output and allowable performance output of the system are defined as functions which can reflect the 
uncertainty and evolution characteristics of system state and requirement. In the view of EBUD, some 
notations such as uncertainty, reliability of the system are redefined and explained. The system in 
EBUD is described with the drift function and diffusion function, and the system reliability is expressed 
with the inequality relationship of the performance output and allowable performance output. The 
reliability of system in EBUD is dynamic variation and can be calculated at any time by using the 
observing data of the system variables. 

In the system conceptual design period, the designer can know about the system reliability (or 
uncertainty) at any time. The EBUD supplies a method to forecast the trend of the system state. Two 
example demonstrates the EBUD is a universal method without focusing on the special system. The 
EBUD can have a widely application aspects, it can also be applied to tackle with such systems like city 
traffic system, city water supply and drainage system, gas system, nuclear system and logistic system. 
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