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Abstract. Considering a linear or exponential trend in unit production cost under a foreseeable time 
horizon, this study discusses the economic production quantity (EPQ) with shortages problem for a 
production system. A genetic algorithm (GA) with the chromosome of real number type to solve this 
problem is presented. Although, standard GA operators are used to generate new populations, the 
particular of this study is that we select two differentiate equations to develop a proposed production 
scheme. Then, compute the total cost with this production scheme as the fitness function to evaluate 
the populations. In this study, an explicit procedure to obtain the local optimal solution is provided 
and numerical examples to illustrate the proposed model are shown as well. 

 Introduction 
The traditional economic production quantity (EPQ) model assumed a constant unit cost. 

Actually, the unit cost may vary with time. Recently, many businesses have confronted the price of 
merchandise fluctuating due to global economic events or technology innovation, which results in the 
risk of business trade increasing. Some outstanding enterprises even encountered heavy losses for 
neglecting the impact of this issue. During 2005-2007, emerging market economies, including the 
four BRIC (Brazil, Russia, India and China) countries, after witnessing a comparatively higher 
growth than rest of the world, caused the price of commodity increasing very steeply. In beginning 
2008, the subprime mortgage problem in US triggered a worldwide financial crisis. The price of most 
commodities tumbled dramatically. According to International Monetary Fund [1] database for the 
price of commodity, the price of copper, a critical material of modern industry, was from US$ 3241.9 
to US$ 8059.19 per ton (raised 162%) during 2005M05-2006M05 due to BRIC flourishing. 
Conversely, the price of copper was from US$ 8714.18 to US$ 3770.88 per ton (dropped 57%) during 
2008M04-2009M03 owing to the US subprime crisis. The ASUS [2], the second largest of Taiwanese 
PC manufacturer, encountered its first quarterly loss since the company was founded in 1989 during 
the four quarter of 2008 for improper inventory policy and large inventory write-offs. Consequently, 
the traditional economic production quantity (EPQ) model assuming constant unit cost is no longer 
suitable in today’s time-based competition. For advanced technology, Khouja & Park [3] assumed 
that the unit price decreases exponentially and developed a closed-form approximate solution for a 
periodic EOQ model over a finite horizon. Later, Khouja & Goyal [4]extended the unit cost to a linear 
or exponential function and presented a non-periodic EOQ policy. Under the same unit cost 
assumption, Ouyang and Rau [5] extended Khouja and Goyal [4] on products experiencing 
continuous decrease in unit cost to the case of a finite production capacity being inputted. None of the 
above contributions eliborate the EPQ with shortages. Applying genetic algorithms to the traditional 
economic lot size scheduling problem (ELSP), Khouja et al. [6] proposed a genetic algorithm to 
derive the solution. Hop and Tabucanon [7]  encoded the timing of replenishment as a string of binary 
digits (a chromosome) and selected an adaptive genetic algorithm to handle the same problem. 

Assumptions and notation 
The assumptions for this proposed production system are as follows: 

ü Unit cost is a linearly or exponentially continuous function. 
ü Demand is a constant over a finite time horizon and shortage is considered. 
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ü The production rate is always greater than or equal to the sum of the demand rate. 
ü No stock is hold at beginning and end of the time horizon.  

The following notation for our mathematical development is used. 

The mathematical development 
Suppose a specified number of n production cycles under the finite time horizon H. Fig. 1 

depicts the inventory level of the ith production cycle for this proposed model.  
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The production quantity of this production cycle is 
1( ) .i i iQ t t D−= −   (3) 

Thus, the total cost of this proposed model TC(n,{si},{ti}), including production set up cost, unit 
production cost, holding cost and shortage cost, is 

H Finite planning horizon Cs Unit shortage cost 
D Constant demand ti Finished time of the ith production cycle 
P Finite production rate Qi Production quantity of the ith production cycle 
n Number of production cycles Ti  Time interval of the ith production cycle 
f(t) Unit production cost at time t, f(t) = a - bt 

or f(t) = ae-bt 
si Completed shortage time of the ith production 

cycle 
Li Maximum inventory level of the ith 

production cycle 
Bi Maximum shortage of the ith production cycle 

h Fraction of holding cost TC Total cost 
Cr Production set up cost   
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Figure 1. Inventory level for the ith production cycle. 
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Fix the number of production cycles n and differentiate Eq. (4) with respect to ti and si. A necessary 
condition to acquire the optimal solution is that these two equations have to equal zero as follows: 
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In this problem, we have to determine the number of production cycles n and production 
schedule ti and si, which is a complex nonlinear problem. Thus, we propose a genetic algorithm with 
the chromosome of real number type to seek an approximately optimal solution. According to 
Bellman’s principle of optimization [8], once we find the correct t1 and s1 and the remaining 
production schedule t2 to tn and s2 to sn can be determine by Eqs. (5) and (6). Consequently, we only 
have to search t1 and s1 and neglect n. An explicit procedure to derive an approximate solution by this 
proposed genetic algorithm shows in the following: 
Coding scheme: 

We assume that the planning horizon is always less than one year. Therefore, randomly select a 
chromosome consisting of 20-bits for the first production cycle time  t1 under a reasonable range. For 
example, t1 = 0.125 is represented by the bit string 0010,0000,0000,0000,0000. 
Fitness function: 

With a trial values (chromosome) for the starting point t1 in Eq. (5) to get s1, replace s1 and s2 into 
Eq. (6) from Eq. (5) then obtain t2. Repeatedly solve t3, t4,….., tn-1, tn until  tn-1 < H and tn ≥ H. Then, 
compute TC(n, {ti},{si}) where tn = H and  TC(n-1, {ti},{si}) where tn-1 = H from Eq. (4). Comparing 
these two total cost, we obtain the fitness function as follows: 
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Genetic operators: 
Three standard genetic operators are used, namely, reproduction, mutation and crossover. 

Searching direction: 
This GA searching direction is controlled by the self-adjustment rate of operators based on  

survivor off-springs’ rates that are determined after each generation in order to the next search. 
Input parameters: 
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( ) ( )40 5 (Ex. 1), 40 2 (Ex. 2), 16000, 12000, 0.08,C 10, 100, 0.5.s rf t t f t t P D h C H= − = + = = = = = =
Parameters of genetic algorithm are population size = 100, probability of mutation = 0.01, probability 
of crossover = 0.7, generation size = 100, initial rate of crossover operation = 0.7, initial rate of 
mutation operation = 0.25, initial rate of reproduction operation = 0.05 and stop condition. 
Output:  The local optimal production schedule and the total cost. 
Step 1: Let g = 0, where g is the generation count. 
Step 2: Generate initial population P(g) randomly. 
Step 3: Evaluate P(g) to determine the best fitness value (best_fitness) and initialize the rates of 

operations. Repeat. 
Step 4: Generate new population P(g+1) using GA operators’ rates from above offsprings. 
Step 5:  Evaluate P(g+1) and determine number of survivors. Save the new best_fitness: 
Step 6:  Set P(g) = P(g+1). Until a stopping criterion is reached. 
Step 7:  Compute the output based on the results. 

Appling to our GA, the results of these two  numerical examples are shown in Table 1. 

Table 1. The results of numerical examples 

Ex. i 1 2 3 4 5 6 7 8 

1 
s 0.010 0.072 0.135 0.197 0.260 0.322 0.385 0.447 
t 0.062 0.125 0.187 0.250 0.312 0.375 0.437 0.500 
Q 749.738 749.812 749.887 749.962 750.037 750.112 750.188 750.264 

2 
s 0.006 0.255 

 t 0.250 0.500 Total cost for example 1: 240120 
Q 2994.959 3005.041 Total cost for example 2: 241360 

Summary 
Foreseeing the unit production cost fluctuating under a planning horizon, this study presents a genetic 
algorithm to solve an EPQ with shortages problem. The particular of our proposed genetic algorithm 
is that we select Eqs. (5) and (6) to extend the production scheme for the fitness function. This 
algorithm has the potential applied to other complex problems. Thus, the further research direction 
will focus on various issues for a supply chain or production system. 
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