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Abstract. In distributed storage systems, data migration is an efficient method for improving system 
resource utility and service capacity, and balancing the load. However, the user accessing is changing 
over time and the state of a distributed system is in an unpredictable stochastic fluctuation, hence 
traditional heuristic policy- based methods are hard to work in such environment. This paper 
proposes a fuzzy reinforcement learning method for online data migration named FRLDM which can 
enable the systems to self-optimize and dynamically choose the candidate data for migration based on 
their recent access pattern and the current state of the system, thus minimizing the average access 
response time. The experimental results prove that FRLDM can improve the accesses performance 
significantly compared with heuristic policy-based methods. 

1. Introduction 
In distributed storage systems, data migration is an efficient method for improving system 

resource utility and service capacity and balancing the load. Currently most researches on data 
migration are heuristic policy-based methods [1, 2], which heuristically specify which data, when and 
where to migrate at some certain conditions. They are easy to realize and can optimize the system 
performance temporally. However, data access patterns are more diverse and change over time [3], 
and the state of a distributed system is in an unpredictable stochastic fluctuation, such heuristic 
policy-based methods are hard to work in such environment and cannot adapt the changes in real-time, 
which may deteriorate the system performance in the long term. Additionally, in current 
enterprise-class storage systems, online data migration is required because of equipment damage and 
expansion [4]. Hence, to continually optimize the system performance, it is expected that the systems 
can develop and implement real-time migration decisions according to the system states and 
environment evolution. In other words, the storage systems should be intelligent which have the 
capacity of decision-making and self-optimizing without unfaithful human interventions.  

Reinforcement learning (RL) [5] is a machine learning method which use experience gained 
through interacting with the world and evaluative feedback to continuously improve a system’s 
ability to make behavioral decisions. Different with supervised learning and unsupervised learning, 
RL provides a high performance self-learning framework for the learning systems, where a key issue 
in RL is to construct the reward functions [6]. Fuzzy logic approximator (FLA) [7] is an efficient and 
widely-used method for function approximation which can approximate the reward functions in RL. 
Then, the self-learning capacity of RL and the approximation capability of FLA are integrated to 
provide a novel solution for realizing the self-optimization in large-scale distributed storage systems. 

This paper proposes a data migration method based on multi-agent fuzzy RL, which establishes 
the optimization goal for distributed storage systems, then uses FLA to approximate the reward 
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functions and RL to learn and adjust the parameters. Accordingly, the automatic online data 
migration is realized to improve access performance under continuous and large-scale state space and 
stochastic dynamic environment. 

2. Data Migration 
A Large-scale storage system is composed of data centers (in cloud computing) or clusters (in data 

grids) [8], where any data center or cluster is denoted as iC   and its shared bandwidth for data I/O and 
data migration is iB . Every single file in the system has multiple replicas, and the I/O request for each 
file is stochastic and scheduled to the data center which has the smallest response time. The response 
time of an I/O request consists the queuing time and the processing time, and the processing time is 
determined by the size of requested files divided by shared bandwidth of the local data center. 

Some files are selected and migrated from their located data center to another to improve their 
current response time, and meanwhile, the expected future response time of the other files in the 
original data center and destination data center will be affected. Hence, the influence on the future 
states of the involved data centers must be considered in data migration process, which is neglected in 
policy-based methods. 

Reward functions are usually adopted to represent expected optimizing objectives. Once a reward 
function is formed, the system will take actions automatically to optimize current reward functions. A 
reward function reflects not merely the current system state but also the future state after a sequence 
of actions. Therefore, how to construct the reward function for a distributed system is the necessary 
prerequisite for realizing the RL and the self-optimized data migration. 

3. Fuzzy Logic Approximator 

Fuzzy logic approximators (FLAs) have been successfully applied in functional approximation, 
modeling and control in dynamical systems due to the approximation capabilities and inherent 
adaptive features, and proven to be capable of approximating any well-defined nonlinear function to 
any degree of accuracy [9]. 

The fuzzification maps some deterministic inputs into some fuzzy sets and uses membership 
functions determine the degree to which an input belongs to a fuzzy set. The fuzzy If–Then rules are:  

( ) lll
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ll ByAxAxRule isTHEN,isandandisIF: 11  .                                                                        (1) 
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are some overlaps among the fuzzy sets which have no obvious boundaries, and yl changes 
continuously with the extent to which x  belongs to the fuzzy sets. That can avoid the sudden change 
of yl when x  crosses the boundary between two input spaces in traditional heuristic policy-based 
methods. As a result, FLA is very popular in parameter optimization of complex control systems. 

4. The Method of Fuzzy Reinforcement Learning 
A data center can be viewed as a learning system (LS). It is infeasible to define a global reward 

function because of the dynamic add and quit of a LS. Every learning system needs a reward function 
( )sR  of its own. ( )sR  indicates the expected future response time of the data center at the current state 

583



 

s . The more accurately the reward function is learned, the more benefits the data migration will 
bring.  
4.1 Reward Functions.  

Appropriate input parameters are selected by the system for each reward function and the outputs 
are translated into the data migration strategies. For distributed storage systems, the learning time of a 
reward function grows exponentially with the number of dimensions of state variables [10], so state 
variables are preferred to be fewer and can reflect the future system state. 

A two-dimensional state vector ( )sss ′′′= ,  is used to represent a data center’s state. s′  indicates the 
average access rate of all files in a data center. When a file F is accessed at time t, its average access 
interval is ( )( )ttFF ′−−+= ηµtt 1 , where t' is the last access time of the file F, and 1<η  is the 
discounted coefficient which determines the discounted rate of history access information. Then, the 
access rate of file F is approximated as FFa t1= . s′  can reflect the number of accesses per unit time 
that the data center will receive in the future, and the larger s′  is, the smaller ( )sR  will be. s ′′  is the 
current queuing time in the data center, and a larger s ′′  suggests a longer expected access response 
time in the future. When the current states of data centers dci and dch are si and sh, and the current 
rewards are Ri and Rh,  respectively, the file will be migrated between the data centers dci and dch if 
and only if )( hhii sRsR + )~~~~( hhii sRsR +> , where is~  and hs~  are the resulting states of data centers dci and 
dch, and  iR~  and hR~  are the resulting rewards after migration. This method is robust to the dynamic 
add and quit of a data center and scalable. 
4.2 Fuzzy approximation of reward functions.  

The numbers of fuzzy sets and fuzzy rules heavily influence the complexity of a FLA, and the 
larger the numbers are, the higher the approximation accuracy will be, and the more complex FLA 
will be. When there are sufficient fuzzy sets and appropriate membership functions, FLA can 
approximate any continuous function [7]. However, the trade-off between complexity and accuracy 
must be considered in real-world usage. 

As shown in Fig. 1, three membership functions are employed to describe the degree to which the 
input nx belongs to the three fuzzy sets, COLD, WARM and HOT when nx takes value in the interval 
[0, 1]. Whenever a data migration is needed, each data center will calculate its ( )sR  and ( )sR ~  at the 
input of ( )ssx ′′′= ,  or ( )ssx ′′′= ~,~  and then the output yl is resulted by Eq.(2). 
4.3 FRLDM: FRL-based Online Data Migration Method.  

A distributed storage system has a large-scale and continuous state space, and data migration can 
be triggered at any time point, so the migration decision process of a LS can be viewed as a 
Semi-Markov decision process (SMDP) and a Partially Observable Markov Decision Process 
(POMDP) because it is hard to acquire all relevant information for describing the system states and 
constructing reward functions. A memoryless method [11] is used in this paper, and only the 
observed state vector of each LS is used to learn the reward function of each LS. 

The I/O-triggering is used in the data migration strategy in this paper. To learn the reward 
functions more accurately, a LS will not update its reward function until at least P I/O requests have 
been processed since the last migration decision. Then, the data migration is triggered at irregular 
time intervals because the time costs of processing P I/O requests are different for different LSs.  

Given a set of states S and a set of actions A, a LS takes an action Aam ∈  in the state Ssm ∈  at time 
mt , and then transfers into the state Ssm ∈+1  at time 1+mt  with the state transition probability 
( )mmm assP ,1+ . The expected reward of a LS under a policy π  at state s  is 

( ) ( ) 
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Where α  is the discounted coefficient. 
As known that RL is usually applied to solve the problem of delayed reward, however, each 

migration action would influence the states of the involved data centers immediately in a distributed 
storage system. Temporal difference (TD) learning is an efficient RL algorithm which uses the 
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difference value between two consecutive time points to update the reward functions. For a SMDP 
with finite state and state transitions in a finite period of time, TD learning has a good performance on 
convergence and availability [12]. Hence, TD learning is employed in this paper.  

Suppose the difference value at time mt  is: 
( ) ( )mmmm sVsVer m ππαt −+=∆ +

−
1 ,                                                                                                         (4) 

Where ms  and 1+ms  are the states at time  mt  and 1+mt , mt  is the time the LS stay in state ms , mr  is 
the accumulated reward of the LS in state ms . To accelerate the learning and realize incremental 
learning, the eligibility trace function [13] of each state is introduced: 
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Where λ  is a constant and 10 ≤≤ λ . This function records the recent occurrence frequency of each 
state in a circular manner, and when a state occurs, its eligibility trace will increase, otherwise its 
eligibility trace will decrease exponentially. This function determines how relevant the states and 
what have just happened are. When 0=λ , only the value function of the last state occurred is updated. 
Then the value function is: 

( ) ( ) ( )szsVsV mmm∆+= ρππ ,                                                                                                                 (6) 
Where mρ  is the learning coefficient at time mt . When a state transition occurs, the value function 

iteration is executed simultaneously for all Ss∈ . However, it is infeasible to assign a reward function 
to each state due to the state space of a distributed storage system is very large and continuous, that 
will lead to a low learning efficiency of TD and high costs of compute and storage. Therefore, a 
non-linear value function approximation based on the neighboring states is adopted to approximate 
the optimal value function ( )sV πˆ :  
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Where ( ) ( ) ( ) ( )( )TL ssss φφφφ ,,, 21 = the basis function vector of state s is, ( )slφ  is linearly 
independent which the normalized weight of rule l is: 
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Then, when the current state is ms , the iterative rule of fuzzy output is 
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Where mm 1=ρ  is the learning coefficient, and mr  is the average weighted response time of all 

requests processed by the data center between the state ms  and the state 1+ms : 
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Where mU  is the number of requests processed in state ms , uδ  and u
mt  are the response time and 

the arrival time of the uth request in state ms . l
mz 1+  is initialized as 00 =

lz , and its iterative rule is : 
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When the result of value function stops changing observably in the iteration of TD, the value 
function is considered to be an approximation to the optimal ( )sV πˆ  and parameters of the value 
function begin to be convergent. For data migration, each file migration would influence the current 
state of the data centers immediately, so the policy iteration only needs to consider the current value 
functions of each state, and the optimal policy π ′  can be obtained by the following iterative rule: 

( ) ( ){ }m
Aa

m sVEs ππ
∈

=′ maxarg                                                                                                                  (12) 
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Where ( )asr m ,  is the reward gained in state ms  after taking the action a . When the policy π  has a 
positive impact on the value function, the LS will greedily implement the policy based on the current 
value function and not change the policy until the value function reaches convergence. 

FRLDM algorithm is shown in Table 1. 
Table 1 FRLDM algorithm 

Step 1:Initialize 0=mt , 0=m , the sate ( )mmm sss ′′′= ,  at time mt  of each LS; compute the reward by 
(10), and construct fuzzy sets: HOT、WARM and COLD and fuzzy rules and membership functions. 
In addition, set the learning coefficient as Mm 1=ρ . 

Step 2:Initialize value function ( )sV π  and the eligibility trace function as ( ) 0=szm . 
Step 3:Approximate the optimal value function ( )sV πˆ  and loop: 
    Substep 1: compute the difference at time mt  by (4) and the eligibility trace ( )szm  of the state s 

by (5) 
    Substep 2: compute the basis function vector ( )slφ  of state s  by (8) 
    Substep 3: update the value function estimation ( )sV π  of state s  by (6) 
    Substep 4: update the eligibility trace function lz  by (11),the average weighted response time 

mr  by (12) and the fuzzy output ly  by (9)  
    Substep 5:update the value function till it approximates the optimal value function ( )sV πˆ  by 

(11) 
    Substep 6: 1+= mm  and return to Substep 1 
Step 4: compute the optimal policy π ′  by (12) 

Step 5: trigger the data migration when the criterion is satisfied and quit, otherwise, return to Step 2 
The procedure of policy improvement is also known as policy iteration (PI) and it can find a good 

policy which only requires several iterations and never adopts a bad policy [14]. Hence, PI has 
attracted extensive attention in online learning. The distributed storage system implements the fuzzy 
reinforcement learning in the manner of multi-agent to realize the dynamic data migration decision 
and the system self-optimizing. 

5. Simulations and Results Analysis 
The performance of data migration method is evaluated by the average response time. Due to the 

high complexity of FRLDM implementation, some assumptions are simplified to focus on the 
availability of FRLDM and performance evaluation under different data migration strategies. CApp 
[15] is used as the simulation environment. Some key parameter configurations are shown in Table 2. 

Table 2 Parameters configuration 
The number of files 5000 

The number of replica of each file 1 
The state categories of a file HOT,WARM, COLD 

Initial probability of a file being HOT, WARM or COLD 1/3 

The state transition probability of a file been accessed 

P(WARM︱COLD)=0.3, 
P(HOT︱COLD)=0.1 

P(HOT︱WARM)=0.3 
P(COLD︱WARM)=0.1 
P(WAR︱MHOT)=0.01 
P(COLD︱HOT)=0.005 

Access distribution of files Poisson distribution 

Arrival rate of file access 
HOT:0.5 

WARM:0.1 
COLD:0.01 

586



 

Whenever any data center has processed at least K I/O requests since the last data migration, l
my  is 

initialized to 0 and executed simultaneously for all data center. The set value of K is important which 
ranging from 40 and 90 has nearly the same performance experimentally. In addition, the value of 

α−e  which is between 0.9 and 0.95 has the approximate optimal performance experimentally. The 
algorithm consists of the training stage that updates parameter 5000 times and the testing stage that 
evaluates the different data migration policies during another 5000 time steps.  

Three membership functions shown in Fig.1 are used to approximate reward functions. To select 
the appropriate values for mean nx  and the standard deviation nσ , the first 1000 data migration 
decisions are observed to calculate them of each input parameter.  
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Fig.1 The Membership Functions of The Three Fuzzy Sets: COLD, WARM and HOT 

It is obvious shown in Table 3 that there are no obvious statistical variations of MSEs when the λ 
takes the different value. In other words, the FRLDM algorithm is robust to the various values of λ. 

Table 3 The MSEs of FRLDM at different λ 
λ 0 0.5 1 

MSEs 0.039 0.057 0.062 
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Fig.2 The average response time under different strategies 

Fig.2 shows the average response time of different policies and the performance of FRLDM is 
superior to RLP and ARP significantly. The first policy is the random layout policy (RLP) which 
allocates all files into data centers randomly and doesn’t consider data migration. The second policy 
is the access rate policy (ARP) which migrates the files with the highest access rate in the data center 
that has the highest s′  to the data center that has the lowest access rate s′ . ARP is also a load 
balancing policy. The last policy is the FRLDM which maximizes the value function.  

6. Conclusions 
Data migration is an efficient method for data redistribution. This paper proposes a fuzzy 

reinforcement learning method for online data migration in distributed storage systems named 
FRLDM which integrates the self-learning capacity of RL and the approximation capability of FLA 
to find the optimal data migration policy. FRLDM can enable the systems to self-optimize and 
dynamical data migration. The results prove that FRLDM is robust and can reduce the average 
response time compared with heuristic data migration policies.  

This paper mainly focuses on the availability of the proposed FRLDM. However, there are some 
implementation details which are not considered because of the complexity of the distributed storage 
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systems, and in the future works, the more complex system states and the more specific 
implementation details will be studied. 
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