
 

Locality-constrained Multi-Instance Learning for Abnormal Trajectory 
Detection 

Ruoyao Li 
School of Information, Central University of Finance and Economics, Beijing 100081, China 

agemini4825@yahoo.com 

Keywords: Abnormal trajectory detection, locality-constrained trajectory partition, Hierarchical 
Dirichlet Process-Hidden Markov model (HDP-HMM), multi-instance learning. 

Abstract. Abnormal event detection based on trajectory has been extensively investigated in recent 
years; however, problems remain when processing an incomplete trajectory that usually has 
abnormality in some parts of the whole trajectory and the rest are normal. In this paper, we propose a 
locality-constrained multi-instance learning framework for abnormal trajectory detection. We 
explore local adaptability for robust trajectory classification, and partition each trajectory into 
tracklets by control points of cubic B-spline curves. Then, the tracklets are modeled by Hierarchical 
Dirichlet Process-Hidden Markov Model (HDP-HMM). Finally, the whole trajectory is considered 
within the multi-instance learning framework as bags, when abnormal ones are positive bags consist 
of tracklets, normal trajectories are negative bags with tracklets. With experimental results on the 
CAVIAR dataset, it shows that the proposed method achieves better performance than several recent 
approaches. 

1. Introduction 

Visual trajectory classification has a significant role in computer vision [1,2], because trajectories 
carry rich semantic information that is valuable for identifying crowdedness [3], behaviors [1], 
activities and events [4] of video scenes. The other is that recent advance about visual object tracking 
makes it possible to obtain long trajectories and reliable trajectory feature representations. That is 
why abnormal trajectory detection has attracted a lot of research attentions for years. 

Literatures about trajectory classification mainly involve trajectory representation and trajectory 
modeling. Trajectory representation could be realized using methods including polynomial based 
curve fitting, Haar wavelet transform, minimum error-based polygonal approximation, B-spline 
curves, and Discrete Fourier Transform (DFT) coefficients [5, 6, 7]. In [6], trajectories are 
represented according to the spatiotemporal movements of objects using function approximation 
algorithms of least square polynomial, Cheybyshev polynomial and DFT. In [7], Haar wavelet 
coefficients and Least-squares Cubic Spline Curves Approximation (LCSCA) are adopted as 
parametric vectors to represent a trajectory. Compared with point-based trajectory presentation, 
parameterized trajectory representations substantially compress the trajectories, and are therefore 
more effective for similarity measure and clustering. In [7], it is demonstrated that trajectory 
representation with LCSCA outperforms other parameterized representations, as the least-square 
fitting procedure holds better fidelity to trajectories and insensibility to the variation of trajectory 
length. 

In recent works, on aligned trajectory sequences, unsupervised or supervised learning methods are 
wildly used for abnormal trajectory detection. Trajectory clustering assigns similar trajectories to the 
same cluster using methods such as Self-Organizing Map (SOM) [8], hierarchical fuzzy K-means[9], 
while trajectory modeling constructs a parametric or nonparametric model to represent and index 
trajectories, i.e. Gaussian Mixture Models (GMMs) [10], hierarchical Bayesian Model [11], and 
hierarchical Hidden Markov Model [12]. Existing trajectory clustering and modeling methods solve a 
variety of problems in trajectory analysis, however, they still have the limitation to model trajectories 
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incrementally. Therefore, when new trajectories reach, the model has to be retrained based on the 
previous and the new trajectories that would lead to the high computational complexity.  

Recently, Wu [13] simultaneously trains a representation and detectors for categories with either 
weak or strong labels present. Further, multiple-instance learning approach is frequently used to train 
the detector and infer the object location in positive samples of some supervised approaches [14]. 
Inspired by the attraction and challenge of supervised multi-instance learning, it is introduced into 
abnormal trajectory detection. The discriminative trajectories frequently occur in the positive 
samples but rarely in the negative ones. However, the global learning strategy is challenged when 
there are noises or local variations in whole trajectories.  

In this paper, we propose a locality-constrained multi-instance learning framework for abnormal 
trajectory detection. Comparing with traditional detection methods, the contribution of our paper is 
achieving good performance when processing incomplete trajectories. We use local adaptability for 
robust trajectory classification, and partition each trajectory into tracklets by control points of cubic 
B-spline curves [15]. Then, we model the tracklets by Hierarchical Dirichlet Process-Hidden Markov 
Model (HDP-HMM) [16]. Finally, we combine multiple-instance learning and trajectory partition as 
positive trajectory sample mining strategy and optimize model iteratively. The whole trajectory is 
considered within the multi-instance learning framework as bags, when abnormal ones are positive 
bags consist of tracklets, normal trajectories are negative bags with their tracklets. The experiments 
demonstrate that the proposed approach achieves comparable performance with existing supervised 
approaches. 

The remainder of the paper is organized as follows. In section II, the framework is introduced in 
detail. In section III, we describe the locality-constrained trajectory partition, HDP-HMM, and 
multi-instance learning. Experimental results are presented in section IV and we conclude the paper 
in section V. 

2. Locality-constrained Multi-Instance Learning Framework 

In this section, we first present the locality-constrained multi-instance learning framework for 
abnormal trajectory detection in surveillance video, as in Fig. 1. The framework includes three stages: 
trajectory representation and partition, modeling and training, multi-instance learning.  

Given a video scenario, firstly we do trajectory representation and partition. The objective of 
trajectory partition is to divide a long trajectory into tracklets based on the LCSCA feature vectors 
[15]. Accordingly, a long feature vector is divided into a set of short independent sub-vectors, each of 
which will be better represented by a model. Then, the HDP-HMM model is incorporated to train the 
detection model for each segment of tracklets, without the limits of numbers of states in HMM. 
Finally, we apply KL divergence [17] to measure the distance between each two trakclets, and apply 
Hausdorff [9] to measure the distance between two trajectories. In the trajectory detection stage, 
Citation-KNN [18] is used to learn the trajectory with many instances.  

Start

Input the training and testing set

Trajectory representation and 
partition

Trajectory modeling and training

Trajectory learning

Abnormal detection  
Fig.1. Illustration of the locality-constrained multi-instance learning framework. 
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3. Methodology

In the following, we firstly describe three parts of approaches as LCSCA-based trajectory
representation and partition, HDP-HMM-based modeling and training, multi-instance learning with 
Citation-KNN, to explain how to partition, model and learn the patterns of trajectories.  
3.1 Trajectory Representation and Partition.   

Sillito and Fisher [7] proposed the LCSCA-based trajectory feature representation method, which 
is achieved by approximating each spatial-temporal trajectory with a uniform cubic B-spline curve 
parameterized by time. They showed that the LCSCA control point-based distance between 
trajectories with variable length is more robust than the original point-based distance. Consequently, 
we use the control points of cubic B-spline curves to extract a fixed-length parametric vector as 
trajectory representation. 

Given a trajectory 1 1{( , ), , ( , )}x y x y
i n nt P P P P  , where n is the length of trajectory and ( , )x y

n nP P represents
n-th position point of the trajectory [xv], the corresponding control point-based

feature representation of it  is 1 1{( , ), , ( , )}x y x y
i p py C C C C  , p is the number of control points, and 

( , )x y
p pC C

represents the p-th control point, where
x
pC  and 

y
pC  represent its normalized x-coordinate and

y-coordinate respectively. With the predefined B-spline basis function (1), we can obtain
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Then, the objective of trajectory partition is to divide a long trajectory into tracklets. The trajectory 
partition is based on the fact that trajectories of the same category should often have similar shapes 
and share control points on the cubic B-spline curves. We partition the trajectories into local tracklets 
(local shapes) based on the control points and then align the tracklets via the DTW algorithm [9]. 
After the trajectory partition, a trajectory T is represented as 
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
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Where it  is the feature vector of the i-th tracklet based on trajectory partition and DTW alignment. 
We will model a trajectory with some tracklets of local similarity, called locality-constrained 
representation and partition. 
3.2 Trajectory Modeling and Training.   

With the the proposed LCSCA-based trajectory representation and partition, we further propose a 
discriminate model with HDP-HMM training procedure.  

Considering the complexity of the movement patterns of objects in surveillance video, it is hard to 
get the prior knowledge for the model. When there is a difference between the numbers of assigned 
states and actual states in HMM, we involve HDP-HMM approach which can assign the original prior 
arguments with random values.  Then, we update the state numbers and arguments in HMM instead 
of remaining the same state numbers. The key procedure is how to construct the HDP-HMM [19] for 
each tracklet in Fig. 2. The left part of the drawing is HDP, and the right is HMM. k is sampled

from the Dirichlet process to describe the distribution of the k-th state transition matrix. k  is sampled 

from the prior distribution, it illustrates the observation distribution from the k-th state. tz  is the state 

of HMM, and ty  is the observation of HMM. Moreover, the Beam sampling [19] method is chosen 

to slice sample with dynamic programming quickly. 
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Fig.2. Structure of HDP-HMM 

 
3.3 Trajectory Learning. 

The existing approaches get the sample’s label from the k nearest neighbors, so they usually will 
fail when the k nearest neighbors have different labels. To solve this problem, we use an algorithm 
named Citation-KNN [19]. This method is calculated not only by the nearest neighbors, but also by 
those trajectories that keep the new trajectory as their neighbor, described in Algorithm 1.  

 
Algorithm 1.  Citation-KNN Trajectory Learning 

Input: X is the training set, Y is the testing set, k  is the number of nearest neighbors. 
Output: the label of detection for testing set 
1. Compute the distances among tracklets with KL divergence, 
2. Calculate the distances among trajectories with Hausdorff, 
3. Sort all distances between training and testing sets by step 1 and step 2 on each trajectory,  

4. Select k  nearest neighbors from the testing set, 
5. Count the labels of all nearest neighbors,  
6. Recognize the testing trajectory as abnormal if the number of abnormal labels is more than 

normal ones. 
Because the tracklets are described as a HMM instead of a feature vector, the traditional Euclidean 

distance is not suitable to measure the segments of trajectories. In the above-mentioned 
Citation-KNN method, we use Hausdorff distance to measure the difference among tracklets, and 
apply KL divergence to measure the similarity among trajectory model.  

4. Experiments 

We evaluate our approach on a public trajectory dataset: the CAVIAR (“INRIA”) dataset [20].The 
CAVIAR dataset contains a series of trajectories in an entrance lobby. There are 11 entry-exit routes 
appearing in the dataset.  Considering the traversal orientations, we have 22 categories of normal 
trajectories for dictionary construction. Each category has 100 simulated trajectories. In addition, lots 
of trajectories are of noises and local variations. There are 21 normal trajectories in the CAVIAR 
dataset for testing. These trajectories correspond to people walking directly from one exit to another. 
The Fig.3 illustrates the normal and abnormal trajectory examples. 

 
Fig.3. Normal (left, blue) and abnormal (right, yellow) trajectory examples 

In experiments, we follow [15] to use seven control points (p=7) for trajectory partition. 
Anomalous Correction Accuracy (ACC) is used to measure the proportion of corrected classified 
normal and abnormal trajectories, and recall value is calculated to measure the proportion of 
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corrected labeled abnormal in testing samples. The recall value is very important in the field of 
abnormal event detection, for recognizing a normal trajectory as abnormal one is more serious than 
recognizing an abnormal one as normal. 

There are some experiments to evaluate the effectiveness of the proposed approach in comparison 
with three groups of approaches: LCSCA + HDP-HMM + Multi-instance, LCSCA + HMM + 
Multi-instance, Whole Trajectory + HDP-HMM + Multi-instance. In Table I, the results of abnormal 
detection are very impressive. On the CAVIAR dataset, the proposed LCSCA + HDP-HMM + 
Multi-instance approach has a very high performance (ACC=87.33%, Recall=100%) when using all 
training samples of trajectory. It also gets good performance (ACC=79.30%) on the whole 
trajectories with noises and local variations. Compared with the HMM approach, the proposed 
approach has significant performance improvement. HMM has fixed number of states, beyond 
expressing the true distribution in practical application. That is why the second approach has lower 
accuracy. The third approach based on the whole trajectory which has noises and abnormality in 
some parts, ignoring the abnormal on some local tracklets, so this method has lowest accuracy and 
recall rate. However, the first LCSCA + HDP-HMM + Multi-instance method exactly solves these 
problems, so has highest values of accuracy and recall. 
 

Table 1. Comparisons of abnormal detection 

Dataset Method 
Accurac

y 
(%) 

Recall 
(%) 

CAVIAR 

LCSCA + HDP-HMM + Multi-instance 87.33 100.00 

LCSCA + HMM + Multi-instance 83.42 80.21 

Whole Trajectory + HDP-HMM + Multi-instance 79.30 71.40 

5. Summary  

In this paper, we propose a locality-constrained multi-instance learning strategy for abnormal 
trajectory detection in surveillance video scenes. The novel techniques introduced in this paper 
include trajectory representation and partition, trajectory modeling and training, trajectory learning. 
The proposed approach utilizes locality to represent and partition trajectories into independent 
tracklets, then a robust discriminative HDP-HMM is trained on tracklets. Finally, in the 
multi-instance learning framework, whether a testing trajectory is abnormal or not is determined by 
the classification from some bags. It means that the whole trajectory is considered as bags, when 
abnormal ones are positive bags consist of tracklets, normal trajectories are negative bags with 
tracklets. Thanks to the flexibility of the LCSCA representation and partition and the employed 
Citation-KNN method, our approach reports an efficient and robust detection. Experimental results 
on the CAVIAR dataset show the good performance of the proposed approach. The comparison to the 
recent approaches is also provided, which indicates that the approach improves the state of the art. 
Our method can also apply to other applications, such as event or action recognition. 

References 

[1]. Weinland, D., Ronfard, R., Boyer, E.: A survey of vision-based methods for action 
representation, segmentation and recognition. CVIU 115 (2011) 224–241 

[2]. Nascimento, J.C., Marques, J.S., Lemos, J.M.: Modeling and classifying human activities from 
trajectories using a class of space-varying parametric motion fields. IEEE TIP 22 (2013) 
2066–2080 

[3]. Amit Adam, Ehud Rivlin, I.S., Reinitz, D.: Robust real-time unusual event detection using 
multiple fixed-location monitors. IEEE TPAMI 30 (2008) 555–560 

699



 

[4]. Mahadevan, V., Li, W., Bhalodia, V., Vasconcelos, N.: Anomaly detection in crowded scenes. In: 
IEEE CVPR. (2010) 1975–1981 

[5]. Hu, W., Li, X., Tian, G., Maybank, S., Zhang, Z.: An incremental dpmm-based method for 
trajectory clustering, modeling, and retrieval. IEEE TPAMI 35 (2013) 1051–1065 

[6]. Naftel, A., Khalid, S.: Classifying spatiotemporal object trajectories using unsupervised learning 
in the coefficient feature space. Multimedia Systems 12 (2006) 227–238 

[7]. Sillito, R.R., Fisher, R.B.: Parametric trajectory representations for behavior classification. 
Multimedia Systems 12 (2006) 227–238 

[8]. Morris, B.T., Trivedi, M.M.: A survey of vision-based trajectory learning and analysis for 
surveillance. IEEE Transactions on Circuits and Systems for Video Technology 18 (2008) 
1114–1127 

[9]. Hu, W., Xiao, X., Fu, Z., Xie, D., Tan, T., Maybank, S.: A system for learning statistical motion 
patterns. IEEE TPAMI 28 (2006) 1450–1464 

[10]. Sillito, R.R., Fisher, R.B.: Semi-supervised learning for anomalous trajectory detection. In: 
BMVC. (2008) 1–10 

[11]. Wang, X., Ma, K.T., Ng, G.W., Grimson,W.E.L.: Trajectory analysis and semantic region 
modeling using nonparametric hierarchical bayesian models. IJCV 95 (2011) 287–312 

[12]. Vasquez, D., Fraichard, T., Laugier, C.: Growing hidden markov models: An incremental tool 
for learning and predicting human and vehicle motion. The International Journal of Robotics 
Research (2009) 

[13]. Wu Q, Ng M K, Ye Y, et al. Multi-label collective classification via Markov chain based 
learning method[J]. Knowledge-Based Systems, 2014, 63(3):1–14. 

[14]. Zhang M L, Wu L. LIFT: Multi-Label Learning with Label-Specific Features.[J]. IEEE 
Transactions on Pattern Analysis & Machine Intelligence, 2015, 37(1):1609-1614. 

[15]. Li C, Han Z, Ye Q, et al. Locality-Constrained Sparse Reconstruction for Trajectory 
Classification[C]// 2014 22nd International Conference on Pattern Recognition (ICPR)IEEE 
Computer Society, 2014:2602-2606. 

[16]. Fox E，Sudderth E，Jordan M I，et al． Developing a Tempered HDP-HMM for Systems with 
State Persistence． Technical Report，P-2777． Cambridge，USA: MIT，2007 

[17]. Goldberger J, Gordon S, Greenspan H. An Efficient Image Similarity Measure Based on 
Approximations of KL-Divergence Between Two Gaussian Mixtures[C]// Computer Vision, 
IEEE International Conference onIEEE Computer Society, 2003:487-487. 

[18]. Cui Y Y, Gao Y. Abnormal Event Detection Based on the Multi-Instance Learning[J]. Pattern 
Recognition & Artificial Intelligence, 2011, 24(6):862-868. 

[19]. [Wang Jun，Zucker J D． Solving the Multiple-Instance Problem: A Lazy Learning Approach 
/ / Proc of the 18th International Conference on Machine Learning． Stanford，USA，2000: 1119 
－ 1126 

[20]. CAVIAR. URL http://homepages.inf.ed.ac.uk/rbf/CAVIAR/ 

700




