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Abstract. A new and simple distance relaying algorithm based on KVL for series compensated 
transmission lines is discussed in this paper. The fault impedance can be calculated accurately by 
solving the 3-order fault loop equations consisting of fault phase voltage, current, the differential and 
integral of current. In theory, it studies the applicability of the scheme in fault transient process, and 
put forward the corresponding solution. The simulation test shows that the proposed algorithm 
operates better than the traditional scheme for the series compensated transmission lines. 

Introduction 

Applying series compensation in power systems can increase power transfer capability, improve 
transient stability and damp power oscillations [1]. Even the series compensation technology has 
many advantages, it also brings difficulties to the line protection. The conventional protection will 
lose its selectivity or direction. The placement site of the series capacitor will affect the protection 
performance of the series compensated line. In addition, the extreme nonlinear characteristic of metal 
oxide arrestor (MOV) may cause overreach for the traditional distance relaying scheme [2]. 

To eliminate the influence of series capacitor and the nonlinear characteristic of MOV, many 
schemes has developed in the past few years. Firstly, it shortens the reaching setting of the 
conventional distance protection to avoid the impact of the series capacitor [3]. Secondly, [4, 5] 
proposed the improvement for directional and pilot protection on series-compensated lines, however, 
the scheme can’t be applied to step distance relay in the practical engineering. And then, [6, 7]used 
the wavelet transform technique to improve the performance of protection on series compensated 
transmission lines. However, all these methods need further observation. 

The scheme suggested in [8] can calculate the fault impendence correctively without requirement 
of the parameters of series capacitor device. It utilizes a three order equation group based on KVL to 
calculate the fault reactance X and fault resistance R. Mathematically, the equation group above may 
be free of solution, or have numerous solutions. Corresponding to the problem of number of solutions 
for the equation group, the scheme proposed in [8] is invalid if the equation group is free of solution. 
It analyses the problem above and develops the corresponding solution project in this paper. 

Theory Basis 

 
(a) Fixed SC 

 

(b) Equivalent circuit 
 

Fig.1. SC/MOV/GAP Equivalent Circuit for Analysis 
Fig.1.(a) shows the structure of modern SC/MOV/GAP device. In order to protect SC from 

overvoltage, MOV and GAP are installed in parallel with SC. The series capacitor SC/MOV can be 
linearized as the series connection of Rc and Xc when the MOV conducts [9]. Fig.1.(b) presents the 
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equivalent circuit of SC/MOV/GAP. Three different operating states incorporate the SC/MOV/GAP 
different protection functions for different fault conditions. The three operating states are as follows: 

1) SC/MOV is bypassed with GAP discharging corresponding to Rc=Xc=0; 
2) SC operates with MOV conducting and without GAP discharging corresponding to Rc≠0, Xc

≠0; 
3) SC operates without MOV conducting and GAP discharging corresponding to Rc=0, Xc≠0.  

 
Fig.2. Series compensated transmission line 

The test model used is a 500kV series compensated transmission line with 300km long as shown in 
Fig.2. 

Firstly, for the three order homogeneous linearity equations, as shown (1)  
Ax b                                                                                                                                                 (1) 

1) If r(A)=r(A,b)=3, the equations above have unique solutions; 
2) If r(A)=r(A,b)<3, the equations above have numerous solutions; 
3) If r(A)< r(A,b), the equations above have no solutions. 
Where, r(A) is rank of matrix A. 
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Fig.3. The equivalent circuit of series compensated line during fault period 

When a fault occurs on the line, neglecting the distributed capacitance, the phase (take phase A as 
example) voltage of the bus M is shown as follow: 

01 2
1 1 2 2 0 0 1 2 0 1 2 00 0 0

1 2 0

1 1 1t t tAA A
A kA A A A A A At t t

didi di
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Where, Au is the voltage of phase A at bus M, kAu is the voltage of phase A at fault point, 1 2 0, ,i i i are 
the positive, negative, zero sequence current at bus M, 1 2 0 1 2 0, , , , ,R R R L L L are positive, negative, zero 
sequence resistance and reactance of series compensated line, 1 2 0, ,C C C are positive, negative, zero 
sequence series capacitance.  

For the high voltage transmission lines, 1 2 1 2, ,R R L L   1 2 0C C C  . (2) can be written as (3)  

0
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( 3 ) 1
( 3 )

tA A x
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d i i k
u R i i k L i dt u
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
                                                                                  (3) 

Where, 0 1 0 1

1 1

,r x

R R L L
k k

R L

 
   are zero sequence compensation coefficient. 

Similarly, for phase B and C 
0
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A. Single Phase to Ground Fault 
When AG solid fault occurs on the transmission line, 0kAu  , (3) can be written as 

0
0 0

( 3 ) 1
( 3 )

tA A x
A A A r At

d i i k
u R i i k L i dt

dt C


                                                                                                   (6) 

According to [7], differentiating (6) with respects to t, (7) can be obtained 
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A three order equation group consists of arbitrary three discontinuous sampling points satisfying 
(7), then the fault reactance X and fault resistance R can be obtained. The equation group is as follow 
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                                                                               (8) 

B. Interphase Fault 
The study presents AB interphase solid fault as an example, when AB interphase solid fault occurs 

on the transmission line, 0, 0kA kABu u  , (3) (4) can be written as 
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Subtracting the two equations above, (11) can be obtained 

1 0
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AB AB ABt

di
u Ri L i dt

dt C
                                                                                                                (11) 

Similarly, A three order equation group consists of arbitrary three discontinuous sampling points 
satisfy (10), then the fault reactance X and fault resistance R can be obtained. The equation group is as 
follow 
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                                                                                                 (12) 

Problem existing 

After the power system reaching steady state when permanent fault occurs on the transmission 
lines, the phase voltage and current at bus M are sinusoidal.  

For the single phase to ground solid fault, assuming that the fault phase current is sin( t )mi I    , 
zero sequence current is 0 0 sin( t )i I     the fault phase voltage is sin( t )mu U    , as shown in (8), 
the elements of the equation group are as follows 

0( 3 )
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     ， sin( )mi I t     

As shown above, the elements of the equation group (8) are linearly independent, so 
r(A)=r(A,b)=3, and the corresponding equation group has unique solutions. 

For the interphase solid fault, assuming that the fault interphase current is sin( t )mi I    , the 

fault interphase voltage is sin( t )mu U    , as shown in (12), the elements of the equation group are 

as follows 

cos( t )m

du
U

dt
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I t
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2
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2
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d i
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dt
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792



 

As shown above,
2
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i
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
   , the elements of the equation group (8) are linearly dependent, so 

r(A)=2, r(A,b)=3, and the corresponding equation group has no solutions. 
Above all, the equation group corresponding single phase to ground fault has unique solutions 

while the equation group corresponding interphase fault has unique solutions. So the scheme 
proposed in [7] is no longer applicable for interphase fault if the equation group uses power frequency 
short voltage and current when the power system reach steady state after the fault occurred. It is 
necessary to analyze the applicability of the proposed scheme under transient state. 

Feasibility analysis of the scheme under transient state 

A. Fault behind the capacitor 
By the power system fault analysis theory, the transient current expression is: 

0 0sin( t ) sin( t )

t

Ta
mi I I e    


                                                                                                      (13) 

Where, mI is the amplitude of steady state component of short current,  is the line impedance 
angle after fault, 0I is the initial value of transient oscillating component, 0 is angular frequency of 
damped oscillating components, aT is decay time constant, 2 /aT L R . 

For the ultra high voltage transmission line, 2L R . Assuming that aT   , (13) can be written as 
(14) 

0 0sin( t ) sin( t )mi I I                                                                                                                   (14) 
For the elements of (12) 
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As shown above, the elements of the equation group (8) are linearly independent if 0  , so 

r(A)=r(A, b)=3, and the corresponding three order equation group has unique solutions. 
The situation of ω=ω0 is seldom appear because the system reactance is large while it is necessary 

to avoid the situation of ω=ω0 in the design stage. In fact, even ω=ω0, there is other frequency 
component in the fault current to guarantee that the equation group have solutions.  
B. Fault in front of the capacitor 

The series capacitor is not in the fault loop in this case, the fault current is  

0sin( t )
t

Ta
mi I I e  


                                                                                                                          (15) 

For the elements of (12) 
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I t e

dt T
   


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t
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mi I I e  


     

As shown above, the elements of the equation group (8) are linearly independent if 0 0I  , so 
r(A)=r(A, b)=3, and the corresponding three order equation group has unique solutions. 

However, the corresponding three order equation group has no solutions if 0 0I  when the 
capacitor is not in the fault loop. In this case, monitoring the value of (A) ,determinant of matrix 
A ,in the first few cycles after fault occurring could recognize that the fault is behind or in front of the 
capacitor. If (A) 0  , the fault is in front of the capacitor, otherwise, the fault is behind the capacitor. 
Once the fault is in front of the capacitor, the fault impedance can be solved by the two order equation 
group. For the fault behind capacitor, the transient low frequency component always exists in the 
fault current no matter how much the initial phase angle is.  
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Simulation tests 

In order to evaluate the performance of the novel algorithm, a simulation model of a 500kV, 
300km series compensated transmission lines is shown in Fig.2. The parameters are presented in the 
Appendix. PSCAD and MATLAB are utilized for the power system simulation and algorithm 
calculation, respectively. A two order Chebyshev-Ⅱfilter is utilized. The least square method is 
employed to solve (8) (12). Power angle of source N lags behind source M by 30º (heavy load) to 0º 
(no load). Distance protection Zone-I is set to protect 85% (255 km) of the transmission line. Faults 
are initiated at 0.4s. Power frequency is 50 Hz. The sampling rate of 50 samples per cycle (for 50 Hz 
system) is used. To compare with the proposed algorithm, the traditional distance relay algorithm for 
single phase to ground fault and phase to phase fault as shown as (16) and (17) are employed. 
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(a) Fault impedance loci measured at end M 
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(b) Fault impedance loci measured at end N  

Fig.4. Estimated fault impedance under AG solid fault at 240km from bus M. 
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(a) Fault impedance loci measured at end M 
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(b) Fault impedance loci measured at end N  

Fig.5. Estimated fault impedance under AB solid phase to phase fault at 150km from bus M. 

0/ ( 3 )Z U I KI                                                                                                                                    (16) 
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/Z U I                                                                                                                                           (17) 

Where 0 1 1( ) / 3K z z z  , φ can be any phase of A, B, or C. 0 1,z z represent zero-, positive-sequence 
impedance per unit length, φφ can be any phases of AB, BC, or CA. 

Fig.4. shows the comparison results between the proposed algorithm and the conventional 
algorithm when a AG solid fault occurs at 240 km away from end M, which is inside the both 
protected range of relay 1 and relay 2. As shown in Fig.4.(a) and Fig.4.(b), the calculated fault 
impedance in end M and N with the conventional algorithm (16) shows considerable oscillation and 
inside the first-zone due to the series capacitors being in fault loop. However, the proposed algorithm 
can calculate the fault impedance accurately, and it will reach stable in about 20ms for the proposed 
algorithm in both ends. 

For the phase to phase fault, as the fault phase current is larger than the fault phase current in the 
case of single phase fault when the fault occurs in the same point on the lines. Generally, for the phase 
to phase fault, MOV may be conducted, even GAP would be triggered. Fig.5. shows the comparison 
results between the proposed algorithm and the conventional algorithm (17) when a AB solid phase to 
phase fault occurs at 150 km away from end M, which is inside the both protected range of relay 1 and 
relay 2. As shown in Fig.5.(a) and Fig.5.(b), the calculated fault impedance at relay 1 with the 
conventional algorithm and proposed algorithm are almost same because the series capacitor in fault 
loop is bypassed by GAP. However, the calculated fault impedance with proposed algorithm will 
reach stable in about 20ms in both ends. 

Conclusion 

By the analysis above, it is reasonable that using superposition of transient and steady state 
component after fault to calculate the impedance for the proposed scheme. For the ultra high voltage 
transmission line, the decay time constant is large as the value of /L R  is large. So the transient 
component in the fault current is abundant in the first few cycles after the fault occurred. And the 
proposed scheme is reliable for single phase to ground fault and interphase fault on the series 
compensated transmission lines. 
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