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Abstract— The ensemble empirical mode decomposition 

(EEMD) is a self-adaptive signal processing technique for 

nonlinear and non-stationary signals, which can alleviate the 

mode mixing problem occurring in empirical mode 

decomposition (EMD). As a improved support vector 

machine (SVM) method, Twin support vector machine 

(TWSVM) is a powerful tool for supervised learning, which 
are successfully applied to classification and regression 

problems. This paper proposes an effective fault diagnosis 

method for roller bearings based on EEMD and TWSVM. 

First, the vibration signals collected from the roller bearings 

are decomposed using EEMD and intrinsic mode functions 

(IMF) are produced. Second, the sample entropy of the most 

IMFs are calculated as the feature of initial signal. At last, 

these features, as training and recognition samples, are fed 
into TWSVM to identify the bearing fault conditions. The 

experiment results show that the proposed method can 

accurately recognize the bearing normal, inner race, outer 

race and ball fault under small samples. 

Keywords-EEMD; EMD; sample entropy; TWSVM; fault 

diagnosis. 

I.  INTRODUCTION  

 Roller bearings are essential components of rotating 
machinery and the health condition of roller bearings is 
always a topic issue. In rotating machinery, the failure of 
roller bearings can result in the deterioration of mechanical 
condition and safety. Therefore, it is significant to find a 
method which can precisely and automatically diagnose 
the faults occurring in the bearings. The vibration-based 
signal processing technique is one of major tools for 
diagnosing bearing faults. Then, the fault characteristic 
information can be extracted from the vibration signals.  

Recently, various methods has been proposed for 
bearings fault diagnosis in [1-4]. Traditional signal 
processing techniques cover time-domain method and 
Fourier transform, applied to linear and stationary data. 
Since the vibration signals captured from the faulty 
bearings are strongly nonlinear and non-stationary, the 
conventional signal processing techniques inevitably cause 
serious errors. Empirical mode decomposition (EMD), a 
novel time-frequency analysis technique, has been 
introduced by Huang et al[5]. to deal with the nonlinear 
and non-stationary signals. EMD is based on the local 
characteristic time scales of a signal and can self-

adaptively decompose the original signal into a set of 
intrinsic mode functions (IMFs). The IMFs have actually 
physical meaning. Nonetheless, one of the major 
shortcomings of EMD is the mode mixing problem, which 
includes either a single IMF consisting of components of 
widely disparate scales or a similar scale signal remains in 
different IMFs. To remedy the deficiency of the EMD, the 
ensemble empirical mode decomposition (EEMD), a new 
noise-assisted data analysis method, is presented recently 
by Wu and Huang[6]. The EEMD method can eliminate 
the mode mixing problem automatically by adding finite 
white noise to the investigated signal. Therefore, EEMD 
will be employed as the tool to process the vibration 
signals of roller bearings in this paper.  

In recent years, support vector machine (SVM), 
replacing the artificial neural network method, has  been 
successfully applied in fault diagnosis.[7] The SVM 
approach is systematic and motivated by statistical 
learning theory (SLT) and Bayesian arguments. In the case 
of small samples, SVM has a better performance than 
neural network method and, to a large extent, overcomes 
the problems such as curse of dimensionality and over-
learning. Twin Support Vector Machine (TWSVM) is 
developed by Jayadeva et al. [8], which obtains non-
parallel hyperpanes by solving two novel formulations of 
quadratic programming problems (QPP). The 
generalization of TWSVM has been shown to be 
significantly better than standard SVM for both linear and 
nonlinear kernels. TWSVM possesses more excellent 
processing speed and recognition rate than traditional 
SVM, thus it has a vast potential for practical application. 

This paper combined the merits of  EEMD and 
TWSVM, then a new fault diagnosis method to 
automatically and effectively diagnosis faults of roller 
bearings is presented. Because sample entropy can show 
the complexity of signal stably, compute the sample 
entropy of principal IMF components as feature extracted 
from the vibration signals. As training and recognition 
samples of machine, sample entropy are input into 
TWSVM to design a roller bearings fault classification 
recognizer. This paper uses one-against-rest TWSVM to 
classify fault conditions. The remainder of this paper is 
organized as follows. Section 2 introduces EMD method 
and EEMD method, respectively. Section 3 briefly 
discusses the sample entropy formulation. The new fault 
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diagnosis method based on EEMD and TWSVM is 
presented in Section 4. Section 5 uses experiments to 
illustrate the effectiveness of our methods. Finally, some 
concluding remarks are given in Section 6. 

II. EMPIRICAL MODE DECOMPOSITION AND ENSEMBLE 

EMPIRICAL MODE DECOMPOSITION 

A. EMD algorithm and mode mixing  

Based on the time scale of the local signal 
characteristics, EMD decomposed signals into a set of 
complete and almost orthogonal components named 
several intrinsic mode functions (IMF). Each IMF must 
satisfy the two conditions: (1) the number of extreme 
points and the corresponding number of zero crossing 
points in entire data segment must either be equal or have a 
difference of no more than one; (2) at any time the mean of 
upper envelope curves formed by local maximum points 
and lower envelope curves formed by local minimum 
points should be zero. The IMFs represent the natural 
oscillatory mode embedded in the signal and work as the 
basic functions, which are determined by the signal itself. 
Thus, EMD is a effective self-adaptive signal processing 
method for nonlinear and non-stationary signals. However, 
one drawbacks of EMD is the mode mixing problem, 
which is defined as a single IMF including oscillation of 
dramatically disparate  scales, or a component of a similar 
scale residing in different IMFs. In this case the IMF 
components would lose physical meaning. 

B. EEMD algorithm 

To overcome the problem of mode mixing in EMD, a 
new noise-assisted data analysis method named EEMD is 
proposed. It defines the true IMF components as the mean 
of an ensemble of trials and every trial consists of the 
decomposition results of the signal plus a white noise of 
finite amplitude.  

EEMD is a substantial improvement of EMD, and its 
procedures are as follows: 

(1) Initialize the number of ensemble M, the amplitude 
of the added white noise, and m=1. 

(2) Add a random white noise signal to the original 
signal 

                         
       1                 tntxtx mm   

where  tnm
 indicates the mth added white noise series , 

and  txm
 is the noise-added signal of the  mth trial. 

(3) Decompose  txm
 into a series of IMFs 

mic ,
 

utilizing EMD as follows: 
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where mic ,  denotes the ith IMF of the mth trail, mNr  

denotes the residue of the mth trail and Nm is the IMFs 

number of the mth trail.   

(4) If Mm  , then repeat steps (2) and (3), and add 

different random white noise signals each time. 

(5) Obtain ),,min( 21 MNNNI   and calculate the 

ensemble means of the M trials for each IMF       
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 (6) ic is the ensemble mean of corresponding IMF of 

the decompositions. 

 
III. FEATURE EXTRACTION WITH SAMPLE ENTROPY 

A. Sample entropy  

 Entropy, a nonlinear dynamics parameter measuring the 

occurrence probability of new information in time series, 

has been applied in many scientific fields. Recently, a 

number of different entropy estimators have been applied 

to quantify the complexity of the signal. Approximate 

entropy (ApEn) is proposed by Pincus in 1991 from the 

perspective of time series complexity and successfully 

applied to the physiological signal analysis. Approximate 

entropy possess many advantages such as good anti-

interference abilities. However, the results of approximate 

entropy were somewhat biased and inconstant.  

In order to overcome these defects of ApEn, Richman 

and Moorman presented an improved method of sample 

entropy in 2000[9], which not only maintained the merits 

of approximate entropy but also simplified the calculation 

and reduced the computation time by half[10]. Sample 

Entropy (SampEn) examines time series for similar epochs 

and assigns a non-negative number to the sequence, with 

larger values corresponding to more complexity or 

irregularity in the data [8]. Sample entropy could be 

expressed as SampEn(m,r,N), where N is data length, r is 

similar margin and m is embedding dimension. For given 

N data points from a time series {x(n)} = x(1), 

x(2),…,x(N), the sample entropy algorithm is as follows.  

(1) Form a set of m-dimensional vectors according to 

the order of serial number. 

          
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    (2) Define the maximum distance between vector X(i) 

and vector X(j) as d[ X(i), X(j)].  

           
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(3) For a given X(i), count the number of j, denoted as 

Bi, such that d[ X(i), X(j)] is less than or equal to r.  
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(5) Increase the dimension to get a (m+1) dimensional 

vector, then repeat the steps of (1)~(4) to obtain Bm+1(r). 

When N is a finite value, the sample entropy can be 

defined as    
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B. Feature extraction  

  In general, the larger energy the IMF component had, 

the more information of the original signal this IMF 

component would contain. In this paper, the sample 

entropy can be used to describe  the complexity or 

irregularity of IMF component. Thus, the sample entropy 

of IMF components with major energy would be extracted 

as the feature of the original signal Then, a set of 

eigenvectors composed of these sample entropies are used 

as the input data of fault pattern recognition. As it is 

known to all,  most energy of signal is contained in the 

first several IMFs. To simplify the calculation process, 

only count the sample entropy values of first few IMFs.  
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Figure 1. The decomposition result of normal  

bearing signal with EEMD 
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Figure 2.  The sample entropy values of eight IMFs 

     To better illustrate, a normal bearings signal, which 

has 1797 rpm motor speeds is decomposed by EEMD. The 

decomposition  results are showed in Fig. 1. It can be seen 

that the signal is divided into eight IMFs. Then calculating 

the sample entropy of each IMF and the corresponding 

values are given in Fig. 2. As displayed in Fig. 2, the major 

information of original signal is embodied in the first five 

IMFs. Therefore only extract the first five sample entropies 

to consist the eigenvector as the signal feature.                

IV. THE PROPOSED BEARING FAULT DIAGNOSIS METHOD 

A. Brief review of TWSVM 

 For the last decade, support vector machine (SVM) as 
powerful tools for pattern classification and regression, 
have already widely applied in a  variety of fields. SVM 

represent novel learning techniques that have been 
introduced in the framework of structural risk 
minimization(SRM) and in the theory of VC bounds. The 
central idea of SVM is to find the optimal separating 
hyperplane between the positive and negative examples. 
The optimal hyperplane is defined as the one giving 
maximum margin between the training examples that are 
closest to the hyperplane. As a improved method of SVM, 
Twin Support vector machine (TWSVM) is first proposed 
by Professor Jayadeva in 2007. This algorithm mainly aim 
at generating two nonparallel planes such that each plane is 
closer to one of the two classes and is as far as possible 
from the other. As a novel support vector machine, the 
main difference between the classic support vector 
machine is that solving a pair of quadratic programming 
problems (QPPs) instead of a single QPP. Meanwhile, 
there are two discriminate curves in TWSVM.  

Thus, the training speed of TWSVM is four times faster 

than that of SVM. TWSVM can also be extended to 

nonlinear cases by considering the two kernel-generated 

surfaces.  

   TWSVM possesses more excellent processing speed and 

recognition rate than traditional SVM. Therefore it has a 

vast potential for practical application, such as pattern 

recognition, data classification, function fitting and so on.  

B. The proposed diagnosis method  

     The proposed bearing fault diagnosis method based on 

EEMD and TWSVM is shown in Fig. 3. It includes the 

following four procedures. First of all, the vibration signals 

captured from the roller bearings is decomposed into a set 

of IMFs by EEMD. Secondly, calculating the sample 

entropy values of the first several  IMFs as the feature 

extracted from the original signal. Finally, input these 

features into TWSVM network, as the training data, to 

built the fault classifiers. Thereby, recognize the fault 

conditions of the roller bearings and final diagnosis result 

can be produced. 

 

 

 

 
 

 
Figure 3.   The processing procedures of the proposed method
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V. EXPERIMENTS AND RESULTS 

TWSVM is initially developed to solve two-class or 
binary pattern recognition problems. To classify roller 
bearings states, which are normal, the inter race fault, the 
outer race fault and the ball fault, multi-class TWSVM 
classifiers must be built. First of all, combine several 
binary classifiers to form a multi-class classifier, then train 
the TWSVM network, lastly, identify fault conditions. In 
this paper, it is needed four binary classifier (TWSVM 1, 
TWSVM 2, TWSVM 3, TWSVM 4) to differentiate four 
types state of roller bearing. Recognition method is 
showed as the following table: 

 
TABLE I.    RECOGNITION METHOD 

The output of classifier The state of bearing 

TWSVM 1 =  1 Normal state 

TWSVM 1 = -1 Other states 

TWSVM 2 =  1 Inter race fault 

TWSVM 2 = -1 Not inter race fault 

TWSVM 3 =  1 Outer race fault 

TWSVM 3 = -1 Not outer race fault 

TWSVM 4 =  1 Ball fault 

TWSVM 4 = -1 Not ball fault 

  
Experiments are conducted using a 2 hp Reliance 

Electric motor, and acceleration data is measured at 
location near to and remote from the motor bearings. 
Through the experiments, collect a bearing data set 
consisting  of four data subsets under normal state, inter 
race fault, outer race fault and ball fault. Each of the four 
data subsets contains 30 groups vibration signals. In this 
four TWSVM input data, separately select 40 groups as 
training sample data, the rest 20 groups as testing sample 
data. The results and prediction accuracy are shown in Fig. 
4, Fig. 5, Fig. 6, Fig.7 and Table 2. In this experiment, the 
TWSVM for four distinct conditions produce the 
classification accuracy of 92.5%, 97.75%, 98.5% and 90%, 
respectively. This result implies that the proposed method 
could diagnosis the roller bearings fault effectively and 
stably. 

 
TABLE II.     PREDICTION ACCURACY OF FOUR STATES 

States 
Norma

l 

Inter race 

fault 

Outer race 

fault 
Ball fault 

Accuracy 92.5% 97.75% 98.5% 90% 
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Figure 4.    TWSVM 1 classifier for normal condition 
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Figure 5.    TWSVM 2 classifier for inter race fault 
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Figure 6.    TWSVM3 classifier for outer race fault 
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Figure 7.    TWSVM 4 classifier for ball fault 

VI. CONCLUSIONS 

    Based on ensemble empirical mode decomposition 
(EEMD) and Twin support vector machine (TWSVM),  
present an effective and automated fault diagnosis method 
for roller bearings. The detailed steps of the method are as 
follows: (1) Pre-process the investigated signals captured 
from the roller bearings with EEMD; (2) Compute the 
sample entropy of the most IMFs for each vibration signal; 
(3) Use the values of the sample entropy as the train data 
of TWSVM to built recognition classifier. The results of 
experiment demonstrate our method is a promising method 
for the fault diagnosis of roller bearings.  
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