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Abstract— The purpose of this paper is to provide an efficient 

pricing method for barrier option with stochastic volatility and 

jump risk. First, by constructing a nonuniform variance grid 

and using local consistency arguments, this paper 

approximates the stochastic volatility jump-diffusion model 
with a finite and dense Markov chain; Then, the paper 

computes the rate matrix of the Markov chain by solving a 

system induced by local consistency conditions; And then the 

paper provides the character function of the Markov chain. At 

last, using Markov chain approximation method and Fourier 

transform technique, the paper obtains numerical solutions for 

barrier options pricing. Numerical results show that 

comparing with the Monte Carlo simulation, the proposed 
pricing technique is accurate, fast and easy to implement. 

Keywords—Barrier option; option pricing; Markon chain; 

stochastic volatility; jump diffusion  

I. INTRODUCTION  

Barrier options [1] are among the most popular path- 

dependent derivatives that disappear or appear if the 
underlying asset price crosses a given level (barrier level) 

before expiration date. Such contracts form effective risk 

management tools, and are liquidly traded in the foreign 

exchange markets. The most frequently used standard 
barrier options are knock in and knock out options. Knock 

in options can be divided into two categories, up and in, and 

down and in. Similarly, knocking out options can also be 

used as a down and out and up and out option. This paper 
focuses on standard knock out call options. 

There exists currently a good deal of literature on 

numerical methods for the pricing of barrier options. It is 

well known that in this case a straightforward Monte Carlo 
simulation algorithm will be time-consuming and yield 

unstable results for the prices and especially the sensitivities. 

Since option pricing can be described as the solution of a 

partial differential equation (PDE) or partial integro-
differential equation (PIDE) with boundary condition [2], 

some researchers have priced barrier options through PDE 

(PIDE) method under stochastic volatility model or jump-

diffusion model [3-7]. However some empirical evidences 

[8-9] show that the model that combines stochastic volatility 

and jumps may be more reasonable. But a complex model 

with too many stochastic factors will lead to difficulty of 
obtaining the solution of the corresponding pricing equation. 

A different approach, pioneered by Kushner [10], is the 

Markov chain approximation method. Originally developed 

for the numerical solution of stochastic optimal control 
problems in continuous time, this method consists of 

approximating the system of interest by a discrete time 

chain that closely follows its dynamics, and solving the 

problem of interest for this chain. An application to the 
pricing of American options under jump diffusion model is 

given in [11]. Zhang et al [12] consider lookback options 

pricing in a stochastic volatility model. Mijatović [13] prices 

barrier options in a local volatility jump diffusion model. 
However, there is rare study for valuation of barrier option 

under a stochastic volatility jump diffusion model, which is 

rather challenge due to the nonlinearity and jump 

discontinuity. 
The rest of the paper is organized as follows. Section 2 

develops the underlying pricing model. Section 3 describes 

Markon chain approximation method. Section 4 presents 

numerical results for barrier options pricing. Section 5 
concludes the paper.  

II. THE MODEL 

An arbitrage-free, frictionless financial market is 

considered where only riskless asset B  and risky asset S  

are traded continuously up to a fixed horizon date T . Let 

( , , , )P tF F be a complete probability space with a filtration 

satisfying the usual conditions, i.e. the filtration is 

continuous on the right. Suppose 1( )W t  and 2 ( )W t  are both 

standard Brownian motion which is tF -adapted, and 1( )W t  

has correlation   with 2 ( )W t .Let ( )N t be independent 

Poisson process with constant intensity  , ( )V t and 

( )S t denote the volatility and price process of stock. 

According to [14], the stochastic volatility jump-diffusion 
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model can be represented by the following: 
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where r  is constant interest rate, 
s is the jump size, and 

ln( 1)s  has an normal distribution with mean 
J  and 

variance 2

J .   denotes the drift term compensates for the 

expected drift added by the jump component. By the 

ˆIto formula, 2
( ) 1

1
exp( )

2
S J JE      . ( )V t  is a 

square root mean reverting process, first proposed by Heston 

[15]. ,  ,  k   The parameter 0k  is the mean-reversion 

rate,  0  is the longterm mean, 0   is the volatility-of-

variance. In this paper, the author always assumes that 
22k  , which is known as the Feller condition. 

III. OPTION PRICING BASE D ON MARKON CHAIN 

APPROXIMATION METHOD 

According to [16], the volatility process ( )V t can be 

approximated arbitrarily well using a carefully selected 
Markov chain which satisfies the local consistency 

requirements. 

A. The “local consistency” concept 

Suppose 0 1{ , , , }
h

h h h h

NV V V V is a variance grid where 

0h   denotes the spacing between discrete points. Assume 

that ( ) ( ) 0h hV t V t   , hN   and the grid can cover 

the domain of ( )V t  as 0h  . Suppose ( )hV t V denote 

the approximating chain of the process ( )V t , and the 

corresponding rate matrix is [ ]h h

ijQ q . 

Assume that the values of the variance process and the 

approximating chain coincid, ( ) ( ).
h

V t V t Suppose 
h

t
E denotes the expectation. For some 0  , ( )hV t meets 

the following local consistency conditions [10]: 

{ ( ) ( )} ( ( )) ( )h h h

tE V t V t k V t o                   

(2) 
2 2{ ( ) ( )} ( ) ( )h h h

tE V t V t V t o                      (3) 

( ) ( ) ( )h hV t V t o h                                (4) 

B. Construction of the approximating Markov chain of the 

model 

1) The grid 

A suitable choice of the grid is essential for the 

effectiveness of the pricing algorithm. One of the features of a 
good grid is that it has sufficient resolution in regions of 

interest, such as the current spot value and the barrier levels, 

which is a necessary condition for constructing a Markov 

chain market model that approximates well the dynamics of 
the given price process. Another desirable feature is that the 

grid “covers” a sufficiently large part of the state-space, 

which is needed to control the truncation error that arises 

when approximating an infinite state-space by a finite state-
space. To employ a uniform grid that satisfies these 

conditions would be computationally expensive. Here the 

author employs the following procedure for generating a 

suitable nonuniform grid G, based on an algorithm from [13]: 

a) Pick 
iN N and (0, ),id    1,2,3i   and the 

smallest and largest values 
1, NV V of the grid V , such that 

1 2 3
.N N N N    

   b) Define the subgrid 

( , , , , , ),  1,2,3.i i i i i i iG G a s b N d d i  
 

1 1 1 2 0,  ,  ,where a V s l s S  

2 3 33 1 2 . , , ,
N

a b Vs u b a b     

The subgrid 
iG is generated by the following procedure: 

      ●  Compute
1 2

1 2

arcsin ( ),  arcsin ( ).
a s b s

c h c h
g g

 
 

 
● Define the lower part of the grid by the formula 

1 1sinh( (1 ( 1) / ( / 2 1))),  kx s g c k M      

where {1, , / 2}k M . 

   ●    Define the upper part of the grid by the formula 

/2 2 2sinh( 2 / ),  k Mx s g c k M    

where {1, , / 2}k M . 

c) 
1 2 3

G GG G   .
 

2)   Computation of the rate matrix  

Assume that at time t, the variance is equal to h

jV . Over a 

time interval  , there are three possibilities: remain at h

jV , 

move up by Ud  to 1

h

j j UV V d   , or move down by Dd to 

1

h

j j DV V d   . Local consistency condition (2) and (3) can 

therefore be restated as 

  , 1 , 1 ( ) ( ),h h
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Solving the above system, it can be obtained 
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3)  The characteristic function 
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Using the decompositions 1 2 2
1 ,W W Z    where 

Z is a standard Brownian motion, independent of all other 
processes, Model (1) can be written  as 

2 2log ( ) ( ) ( ) ( ) ( ) 1

               ( )s

d S t r dt V t dW t V t dZ

dN t
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(7) 
2
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Equation (8) implies that 
2

,
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( )
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dV t k V t dt
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 
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can be substituted into the first expression, and substitute 

( )V t by ( )hV t , it can  be obtained 
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As [16] shows, the approximating characteristic function of 

( )
log

(0)

S t

S
is given by 

( ) exp{ B(u)}T

i iu l t e   

where l is an (n☓1) vector of ones, and 
ie is the i-th (n☓1) 

unit vector. The matrix function B(u) has elements of the 

form: 
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C. Barrier option pricing 

     Let log S x and denote with ( , )U x t  the value of the 

barrier option at time t . ( , )U x t  can be computed by 

( , ) [ ( ( ), )]B BU x t E C S    

where ( ( ), )B BC S    is a discounted payoff function and B  

is the first hitting time of the given barrier level B  by the 

underlying asset process ( )S t . For down-and-out call barrier 

options the payoff ( ( ), )B BC S    is defined by 

max( ( ) ,0),  ,
( ( ), )

0,                                  .
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where K  is  given exercise price at expiration date T . 

Using Markon chain approximation method, ( , )U x t  can 

be obtain by the recursive relationship 

1

( , ) exp( ) ( ( , , ) , )

         exp( ) ( , , )

            P( , )P( )

t t t t t t
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t t t t t t t t
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If denote with ( )f y the log-return density over a time 

interval of t , then the above relationship can be written as  

1

( , , ) exp( ) ( , , ) ( , , ).
N

R
j

U x t i r t U y t t j f y x i j


      

( , , )f y i j can be retrieved by taking the inverse Fourier 

transform of the characteristic function ( )i u . 

IV. NUMERICAL EXAMPLE 

This section uses the method from Section 3 to price 

barrier options. This paper first evaluates barrier options 
using Markov chain approximation method. Then a 

comparison of the speed and accuracy between the Markov 

chain approximation and the exact Monte Carlo simulation 

proposed by [17] is provided.  For comparison the default 

parameters are used in [17] and listed in Table Ⅰ.   

TABLE I.  DEFAULT PARAMETERS FOR BARRIER OPTIONS PRICING 

Parameter Value 

Initial asset price (0) 100S   

Intensity of the Poisson process 0.11   
Volatility of volatility 0.27   

Interest rate 0.0319r   

Long-run variance 0.014   
Initial variance (0) 0.008836V   

Mean reversion 3.99k   
expectation of the jump size 0.12   

Correlation between returns and 

volatility 
0.79   

Maturity date 5T   

Table Ⅱ lists the comparison of the two methods. Except 

for barrier level 90B  , other parameters are the same as 

the ones in Table 1. For Monte Carlo, number of simulation 

is 100000. For Markov chain approximation, number of grid 

is 200. 

 

 

 

 

 

International Conference on Management, Computer and Education Informatization (MCEI 2015)

© 2015. The authors - Published by Atlantis Press 125



TABLE II.  COMPARISON OF DOWN AND OUT CALL OPTIONS PRICES 

BETWEEN MARKOV CHAIN APPROXIMATION AND MONTE CARLO 

SIMULATION 

Exercise 

price 

Exact Monte Carlo 

simulation 

Markov chain 

approximation 

80 32.3423(0.0284) 32.3417 

85 28.9055(0.0271) 28.9060 

90 25.4688(0.0259) 25.4679 

95 22.1107(0.0248) 22.1099 

100 18.9709(0.0235) 18.9701 

105 16.0827(0.0220) 16.0833 

110 13.4641(0.0204) 13.4633 

115 11.1232(0.0188) 11.1225 

120 9.0646(0.0171) 9.0651 

Note: Numbers in parentheses are standard errors for the estimates of options prices.  

The numerical experiment shows that Markov chain 

approximation is considerably faster than the Monte Carlo 

simulation. For the pricing of down and out call options 
Markov chain approximation takes about 0.03 seconds, 

while Monte Carlo simulation takes about 9.1 seconds. 

Moreover, Table Ⅱ suggests the accuracy of the Markov 

chain approximation method. If the Monte Carlo is 

considered to be the benchmark, the relative percentage 

pricing differences of Markov chain approximation are all 
less than 0.09%. 

V. CONCLUSION 

This paper combines stock price jumps and stochastic 

volatility and considers a general jump-diffusion model for 
pricing barrier options. By Markov chain approximation 

method and Fourier transform technique, the paper obtains 

numerical solutions for barrier options pricing. Numerical 

results show that the proposed pricing technique is accurate, 
fast and easy to implement. The paper presents an efficient 

pricing method for barrier option with stochastic volatility 

and jump risk.  
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