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Abstract—This paper introduces a general model of complex 

dynamical networks with coupling delays and delays in the 

dynamical nodes. The synchronization control of the 

complex dynamical networks with coupling delays and 

delays in the dynamical nodes has been studied. Via the 

theory of Lyapunov-Krasovskii stability and linear matrix 
inequalities (LMIs) technique, we design the linear feedback 

synchronization controller for the coupling coefficients 

known by constructing appropriate Lyapunov functions, 

which can be solved easily by the LMI toolbox in MATLAB. 

The controller is very useful for understanding the 

mechanism of synchronization in complex dynamical 

networks with coupling delays and delays in the dynamical 

nodes. It should be pointed out that the node dynamic need 
not satisfy the very strong and the matrix is not assumed to 

be symmetric or irreducible. Moreover, the resulting for 

network synchronization are expressed in simple forms that 

can be readily applied in practical situations. The numerical 

example of the synchronization control problem has been 

illustrated how to this theorem can be applied to judge and 

achieve synchronization in complex networks with coupling 

delays and delays in the dynamical nodes. 

Keywords- complex networks; coupling delays; delayed 

nodes; synchronization control; linear matrix inequalities 

(LMIs) 

I. INTRODUCTION 

In the last few years, complex networks have been 
extensively investigated across many fields of science and 
engineering[1-8]. A complex network is a set of coupling 
nodes interconnected by edges, and its every node is a 
dynamical system. There have been a rich body of 
literature on analyzing complex networks, and one of the 
most significant dynamical behaviors of complex networks 
that has been widely investigated is the synchronization 
motion of its dynamical elements[1-4]. The 
synchronization in complex networks not only can well 
explain many natural phenomena, but also has many 
potential applications in image processing, secure 

communication, etc., which has been a favorite topic for 
research in complex networks [8]. 

In practice, the information transmission within 
complex networks is in general not instantaneous since the 
signals traveling speed is limited, and this is very common 
in biological and physical networks [8-10].This fact gives 
rise to the time delays that may cause undesirable dynamic 
network behaviors such as oscillation and instability. 
Therefore, time delays should be modeled in order to 
simulating more realistic networks. 

In this paper, we first introduce a general model of 
complex dynamical network with coupling delays and 
delays in the dynamical nodes. Then we further study the 
synchronization control of this model. Based on the theory 
of asymptotic stability of linear time-delay systems and 
Lyapunov method combined with linear matrix inequality 
technique, the complex networks with linear feedback 
controllers are considered for the case where the coupling 
coefficients are known. It should be pointed out that the 
node dynamic need not satisfy the very strong and the 
matrix is not assumed to be symmetric or irreducible. 

The rest of the paper is organized as follows. In Section 
2, the model of a general complex dynamical network with 
coupling delays and delays in the dynamical nodes is 
presented and some preliminaries are also given. In 
Section 3, the linear feedback synchronization controllers 
for the coupling coefficients known are designed. The 
numerical example for verifying the theoretical result is 
given in Section 4. Finally, conclusions are presented in 
Section 5. 

II. MODEL DESCRIPTION AND PRELIMINARIES 

The control complex networks with coupling delays 
and delays in the dynamical nodes can be described as 
follows: 
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where 
1 2( ) ( ( ), ( ), , ( )) n

i i i inx t x t x t x t R T is the state 

and input variable of node i  at time t , ( ) n

iu t R  is the 

input variables of node i. : n n nf R R R   is a 

continuous and differentiable function, 
1 and 

2 0   are 

the time delay of coupling delays and delays in the 

dynamical nodes, respectively, which are arbitrary but 

bounded, i.e., 
1 2, (0, ]h   , where h  is a positive 

constant. ( ) N N

ijA a R   and ( ) N N

ijB b R    are the 

coupling matrices with zero-sum rows, which represent 

the coupling strength and the underlying topology for 

non-delayed configuration and delayed one 
2  at time t , 

respectively, 0ija  , 0ijb   for i j , ,ij ija b  are defined 

as follows: if there is a connection from node j  to node 

( )i i j 0, 0ij ija b  , otherwise 0, 0 ( )ij ija b i j   , 

and 
1 2, n nR    are positive diagonal matrices which 

describe the individual couplings between node i  and j  

for non-delayed configuration and delayed one 
2  at time 

t respectively. 

When the delayed dynamical network (1) achieves 

synchronization, namely, the states
1 2( ) ( )x t x t    

( ) ( )Nx t s t , as t  , where ( ) ns t R  is a solution of 

an isolate node, i.e. 

1( ) ( ( ), ( )).s t f s t s t                                (2) 

( )s t can be an equilibrium point, a nontrivial periodic 

orbit, or even a chaotic orbit. Let ([ ,0], )nC h R  be the 

Banach space of continuous functions mapping the interval 

[ ,0]h  into 
nR  with the norm 0 ( )h     ‖‖ ‖ ‖sup , 

where ·‖‖  is the Euclidean norm. The rigorous 

mathematical definition of synchronization for delayed  
dynamical network (1) is introduced as follows. 

Definition 1. Let 0( ; ; ), 1,2, ,ix t t i N   be a solution 

of delayed dynamical network (1), where 

1 2( , , )N    T T T T
, ( ) ([ ,0], )n

i i C h R      are initial 

conditions. If there is a nonempty subset
nR  , such that 

i take values in   and 
0( ; ; ) n

ix t t R   for all 0t t  and 

0 0 0lim ( ; ; ) ( ; ; ) 0, 1,2, ,i
t

x t t s t t s i N


  ‖ ‖       (3) 

where 0 0( ; ; )s t t s  is a solution of the system (2) with 

0

ns R , then the delayed dynamical network (1) is said to 

realize synchronization, and       is called the 
region of synchrony of the delayed dynamical network (1). 

Define the error vector by 

( ) ( ) ( ), 1,2, ,i ie t x t s t i N                       (4) 

Notice that in (1) 
1

0
N

ij

j

a


 and
1

0
N

ij

j

b


 , then the 

error system can be described by 

1 1

1 2 2
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ij j ij j i
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    (5) 
Then the synchronization problem of the dynamical 

network (1) is equivalent to the problem of stabilization of 
the error dynamical system (5). 

Hypothesis 1. (H1) Let 
1 2diag( , , , )NS     be a 

positive-definite diagonal matrix. The nonlinear vector-
valued continuous function, 

: n n nf R R R R   satisfied the semi-lipschiz 

condition: 
T

1 1

2 2

1 2 1 1

( ( ) ( )) ( ( ( ), ( )) ( ( ), ( )))

( ) ( ) ( ) ( ) ( ) ( ) .

i i i

i i

x t s t S f x t x t f s t s t

t x t s t t x t s t

 

   

   

     ‖ ‖ ‖ ‖
(6) 

where 1,2, ,i N , 
1( )t  and 

2 ( )t  are unknown time-

varying nonzero parameters with unknown bounds, that is 

1 1 1( ) [ , ]t    and
2 2 2( ) [ , ]t   .

1 1,  ,
2 2, ,   are 

unknown constants. 

We define 
1 1 1max( , )   and 

2 2 2max( , )   . 

Note that Hypothesis 1 is less conservative than 
general uniformly Lipschitz condition. For example, all 
linear and piecewise linear functions satisfy this condition. 

In addition, if ( , 1,2, , )i

j

f
i j n

x





are bounded and 

0  is 

positive definite, the above condition is satisfied. So, it 
includes many well-known systems, such as the Lorenz 
system,  Chen  system, Lü  system,  recurrent neural  

networks, Chua's circuit, and so on. 

Lemma 1. For any vectors , mx y R   positive definite 

matrix
m mQ R  , the following matrix inequality holds: 

12x y x Qx y Q y T T T
 

If not specified otherwise, inequality 0Q   

( 0, 0, 0Q Q Q   )means Q  is a positive (or negative, 

or semi-positive, or semi-negative) definite matrix, where 

Q  is a square matrix. 

III. SYNCHRONIZATION CONTROL OF THE GENERAL 

DELAYED COMPLEX DYNAMICAL NETWORKS 

In this section, we study the synchronization of the 
general complex dynamical networks with couplings 
delays and delays in the dynamical nodes by designing 
linear controllers for each node. 

 

Let 1 1 1 1( ( ( ), ( )) ( ( ), ( )), , ( ( ),NF f x t x t f s t s t f x t    

1 1( )) ( ( ), ( )))Nx t f s t s t   
, 1A A 

, 2B B 
,

T T T T

1 2( ) ( ( ), ( ), , ( )) ,Ne t e t e t e t
T T T T

1 2( ) ( ( ), ( ), , ( )) .Nu t u t u t u t  

With the Kronecker product `  ' for matrices, system (5) 

can be recast into 
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2( ) ( ) ( ) ( ),j jnNe t I F Ae t Be t u t                       (7) 

Based on a Lyapunov-Krasovskii function, we detrude 
the synchronization control criteria of the delayed 

dynamical network (1). 

Theorem 1. Consider the complex networks (1) with no 

input variables 
1 2, (0, ]h   and no input variables. For 

given scalars ( 2,3,4,5)l l  , if there exist matrices 

ˆ 0P  ,
1

ˆ 0Q  ,
2

ˆ 0Q  ,
1

ˆ 0R  , 
2

ˆ 0R  , ˆ 0S  , , block-

diagonal nonsingular matrices X, Y and any matrices ˆ
iN  

( 1, ,5)i  of appropriate dimensions such that the 

following LMI holds: 

11 12 13 14 15 16 17 18 19

22 23 24 25 26 27 28 29

33 34 35 36 37 38 39

44 45 46 47 48 49

55 56 57 58 59

66 67 68 69

77 78 79

88 89

99

        

       

      

     

    

   

  

 



 
 

 
  
 
   
     
 
     
      
 
       
 
        

0.  

(8) 

11 1 2 1 1 1 1
ˆ ˆ ˆ ˆ ˆ ˆ ,R R N N T T XA A X Y Y T T T T T       

12 1 2 2 2 2
ˆ ˆ ˆN N T XA Y  T T T T    

13 3 3 3
ˆ ˆ ˆ ,N X XA P T T T T      

15 5 5 1 5 5
ˆ ˆ ˆ ,N T T XA Y BX  T T T T     16 1

ˆ ,hN   

17 1
ˆ ,hT  18 29 ,I  

22 1 2 2
ˆ ˆ ˆ ,R N N T     

23 3 2 24 4 2
ˆ ˆ, ,XN N X  T T       

T

25 5 2 2
ˆ ˆ ,N T BX T    26 2 27 2

ˆ ˆ, ,hN hT    

33 1 2 3 3
ˆ ˆ ,hQ hQ X X  T    T

34 3 4 ,X X    , 

T

35 3 5 3
ˆ ,T BXX      36 3 37 3

ˆ ˆ, ,hN hT    

44 4 4 ,X X  T  T

45 4 5 4
ˆ ,T BXX       

46 4 47 4
ˆ ˆ, ,hN hT  

T

55 2 5 5 5 5
ˆ ˆ ˆ ,R T T BX XB  T      56 5

ˆ ,hN   

57 5 66 1 77 2
ˆ ˆˆ , , , ,nhT hQ hQ S S I        

19 28 38 39 48 49 58 59 67

68 69 78 79 89 98 0.

        

     

       

      
 

1 1

88 1 99 2,I I     . 

where A  and B  are given by (7). Then under the 
controller 

( )i i iu k e t                                           (9) 

Let 1 2diag{ , , , }NK k k k with 
1

nK I YX   , then 

the synchronization is achieved.  denotes the elements 

below the main diagonal of a symmetric block matrix. 
Proof: Selecting a Lyapunov-Krasovskii function of the 

form 

2
T T

1

2
T

1

( ) ( ) ( ) ( ) ( )d

( ) ( )d d .

i

i

t

i
t

i

t t

i
t s

i

V t e t Pe t e s R e s s

e s Q e s v s











  

 

            (10) 

Taking the time derivative of ( )V t  along the trajectory 

of (7) yield that 

1

2

1

2 2
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1
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d

d

 

         2

2

( ) ] 2 [ ( )

( ) ( )]

t

t
e s s M F Ae t

Be t e t







  

  


T T

d
           (11) 

From Lemma 1, it follows that 

1 1

1

1 12 ( ) ( ) ( ) ,
t t

t t
N e s ds h NQ N e s Q e s s

 
  

 
   

T T T T T
d

(12) 

2 2

1

2 22 ( ) ( ) ( ) ,
t t

t t
T e s ds h TQ T e s Q e s s

 
  

 
   

T T T T T
d  

(13) 
Then, combining (10})-(11) and  Hypothesis 1, we have 

 
(14) 

where 

11 1 12 13 14 15

22 2 23 24 25

33 34 35

44 45

55

1 1

1 2 ,

I

I

hNQ N hTQ T





    

   

  

 



 

 
 

 
 
  
 

   
     

 T T

  (15) 

where

11 1 2 1 1 1 1 1 1R R N N T T M A A M T T T T        

12 1 2 2 2

T , ,N N AK K T M T T T T    

13 3 1 3 3 ,N M A M P T     T T T T
 

15 5 5 1 5 1 ,N T T A M M B     T T T T

16 1,hN   

17 1,hT  18 29 ,I  
22 1 2 2 ,R N N     T

 

23 3 2 24 4 2, ,N M N M      T T
 

25 5 2 2 ,N T M B    T

26 2 27 2, ,hN hT    
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33 1 2 3 3 ,hQ hQ M M     T

34 3 4 ,M M   T , 

35 3 5 3T M M B    T

36 3 37 3, ,hN hT    

44 4 4 ,M M   T

45 4 5 4 ,T M M B    T  

46 4 47 4, ,hN hT  

55 2 5 5 5 5 ,R T T M B B M T T T       

By Schur complement and 0  , we can get the follow 

matrix inequality.  
 

11 12 13 14 15 16 17 18 19

22 23 24 25 26 27 28 29

33 34 35 36 37 38 39

44 45 46 47 48 49

55 56 57 58 59

66 67 68 69

77 78 79

88 89

99

        

       

      

     

    

   

  

 



 
 

 
  
 
   
     
 
     
      
 
       
 
        

0.

 (16) 

where 
56 5 ,hN  57 5 66 1, ,hT hQ     

77 2 , ,nhQ S S I     1 1

88 1 99 2,I I     , 

19 28 38 39 48 49 58 59 67

68 69 78 79 89 98 0.

        

     

        

     

others ( , 1, ,5)ij i j   are given by (15). 

Define
2 2 1 3 3 1 4 4 1, ,M M M M M M     . Obviously, 

it implies 
1M is nonsingular. Pre- and post-multiplying  

both sides of (16) with ( , , , , , , , , )diag X X X X X X X I I  

and its transpose, where 1

1X M  , and introducing new 

variables 

ˆˆ ˆ, , ( 1,2),i i i iP XPX Q XQ X R XR X iT T T    Y KXT  

ˆ ˆ ˆ, , ( 1,2,3,4,5),j j j jS XSX N XN X T XT X jT T T     

we can obtain (8). Therefore, we can complete the proof. 
Remark 1. Base on LMI method, we construct a more 

general Lyapunov function to analyze the synchronization 
problem of the complex dynamical networks with 
couplings delays and delays in the dynamical nodes. The 
new delay-dependent conditions presented in Theorem 1 
are formulated in the form of LMI, which can be solved by 
the LMI toolbox in Matlab. 

IV. NUMERICAL SIMULATIONS 

Example 1. We show that a delayed network with 

5N   nodes described by (1). Consider a delayed 

electromechanical device network as the node dynamical 
system. It is composed of an electrical part (Duffing 
oscillator) coupled to a mechanical part governed by a 
linear oscillator. The coupling between both parts is 
realized through the electromagnetic force due to a 
permanent magnet. It creates a Laplace force in the 
mechanical part and the Lenz electromotive voltage in the 
electrical part. The electrical part of the system consists of 

a resistor R , an inductor L , a condenser C  and a 

sinusoidal voltage source ( )e t  all connected in series. The 

mechanical part is composed of a mobile beam which can 

move along the z -axis on both sides. The rod T which has 
the similar motion is bound to a mobile beam with a spring. 
A single delayed dynamical equation is described by the 
following  form[11]: 

2 1

1 1 3 1 2

1 2 1 3 1

35( ( ) ( )),

7 ( ) ( ) ( ) 28 ( ),

( ) ( ) 3 ( ).

i i

i i i i

i i i

x t x t

f x t x t x t x t

x t x t x t



 




    
   

           (17) 

The asymmetric coupling matrices as A and B are 
random and satisfied with the coupling condition, 

1 2, (0,1.2]   . The individual couplings matrices are 

1 2 {1,1,1}.diag    Similar to [12], obviously, 

Hypothesis1 holds. 

Applying Theorem 1 with, 
2 3 40.2, 2,      

1 2 4    , 
1 0.6,   

2 1.2   and solving the LMI (8) 

by using LMI toolbox of Matlab, it is found the linear 

feedback gain {4.8466,4.8017,4.6102,4.2442,K diag  

3.8236} .The synchronous error 
ie  is shown in Fig .1. For 

this simulation, the initial values of states are 

(0) (2,2,3)ix  T  and (0) (1,1,1)s  T . 

 
Figure 1. Synchronization errors 

1 2 3
, , ( 1, 2, ,5)

i i i
e e e i   

of networks (1) . 

V. CONCLUSION 

The synchronization control of a general complex 
dynamical network with coupling delays and delays in the 
dynamical nodes which represents a realistic form of 
networks has been studied in this paper. By constructing 
appropriate Lyapunov functions, the linear feedback 
synchronization controllers are derived. These controllers 
are very useful for understanding the mechanism of 
synchronization in complex dynamical networks with 
coupling delays and delays in the dynamical nodes. 
Moreover, the resulting for network synchronization is 
expressed in simple forms that can be readily applied in 
practical situations. Finally, the effectiveness of these 
synchronization criteria is verified by numerical 
simulations. 
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