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Abstract. Shale gas reservoirs have become the focus of considerable attention as primary energy 
resource over the past decades worldwide. Numerical modeling technique plays a critical role in 
providing the essential tools for evaluating and managing the development of such complex systems. 
Gas flow in shale formation involves substantial nonlinear complexity. The flow behavior may be 
governed by the mechanisms of desorption and rock unconsolidation within stimulated natural fracture 
network. It is very likely that the fracture network is unpropped or weakly propped after hydraulic 
fracturing. Desorption is also an important mechanism which contributes to the gas production. In this 
work, a dual-mechanism dual-porosity model was established for pressure transient analysis. 
Finite-difference method was used for discretizing fluid equations, and Newton method was used to 
solve the algebraic equations. The typical curves in terms of dimensionless pseudopressure and time 
were drawn with different sets of parameters. The numerical well-testing model could provide 
theoretical basis for interpreting production data of shale gas reservoirs. 

Introduction 
Shale gas resources are presently received great attention because of their potential to supply the 

world with enormous amount of energy. Even though significant progresses has been made towards 
commercial development of gas and oil from unconventional resources in the past few years, 
characterization of gas flow in theses reservoirs remain a challenge [1]. This is primarily because there 
exist so many nonlinear processes, stress sensitivity effect, adsorption/desorption as well as severe 
heterogeneity on various scales of fractures [2]. It has been shown that conductive and interconnected 
natural fractures can substantially influence well performance [3]. Therefore transient pressure analysis 
for unconventional gas reservoirs cannot rely entirely on traditional, analytical based approaches and 
have to be carried out by numerical approach in general. 

The Physical and Mathematical Model 
A radial dual-porosity model of vertical well in naturally fractured shale gas reservoir was 

established by taking into account the effect of pressure-dependent permeability and 
adsorption/desorption. The physical model is shown in fig. 1. The effects of gravity and capillary 
pressure are neglected, and single-phase gas flow is considered. 

 
Fig.1 Physical model of vertical well in dual-porosity reservoir 
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Adsorption. Natural gas or methane molecules are adsorbed mainly to the carbon-rich components, i.e. 
kerogen. In our model, the mass of adsorbed gas in formation volume V is described using the 
Langmuir isotherm in terms of pseudopressure [4]: 
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Where LV  is Langmuir volume, 3 /m t ; EV  is volume of adsorption, 3 /m t  and Lp  is Langmuir 
pressure, MPa . 
Stress Sensitivtity. In unconventional shale formations with nano-size pores, geomechanics effect can 
be relatively large and may have a significant impact on fractures‘ permeability. Wang et al. Show that 
permeability in the Marcellus Shale is pressure dependent and decreases with an increase in confining 
of pore pressure [5]. The method used here to account this effect in the numerical model is shown as 
below: 
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Where fik  is initial permeability of fractures, 3 210 mµ− ; β  is the stress-sensitive coefficient, 

2. /mPa s MPa . 
Flow Model. Mass conservation equation in pseudo-steady state: 
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Using equations (2), (3) for considering adsorption and pressure-dependent permeability. 
With the integration of equations (1)-(4), we can derive: 
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We can also define: 
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        Interporosity flow coefficient: 2= m
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        The storativity ratio: 
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        Pseudopressure: 
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        The dimensionless stress-sensitive coefficient: sc sc
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Transform the model‘s equations in dimentionless terms, and define: 
1 ln(1 )Df D
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Then we can derive: 
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Initial condition: ( , 0) 0D Dr tη = =                                                                                               (17) 

Inner boundary condition: 
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External boundary condition: lim ( , ) 0
D

D Dr
r tη

→∞
=                                                                          (19) 

Numerical Formulation 
The numerical approach of this work uses finite-difference method for discretizing fluid equations, 

and apply Newton method for solving the resulting nonlinear sets of algebraic equations. 
Discrete Equations. For the convinent of computation, we first apply coordinate conversion: 

( 1)i x
Dr e − ∆= , where ln / ( 1)Dx r N∆ = − , and N is the number of gridblocks. 

Then discretize equations (15)-(19) in finite-difference scheme: 
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Initial condition: 1 1 0i iη ξ= =                                                                                                        (22) 

Inner boundary condition:
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External boundary condition: 1 0n
Nη + =                                                                                         (24) 

Finally, we can write the discretized equations in residual form: 
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1n
N Nf η +=                                                                                                                                        (27) 

Newton-Rapson Method. Newton method is a very efficient algorithm for solving highly nonlinear 

algebraic equations. First we derive the Jocobian matrix: 
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The resulting JB is a triple diagonal matrix, the three diagonal are L, U and D: 
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Then iteration can carry on until convergence through the equations [6]: 
( 1) ( 1)n nJB fδ− −∆ = − , 1n nη δ η+ = ∆ +                                                                                              (34) 

Type Curves for Pressure Responses 

Substituting the numerical solutions η  into the equation of 1 ln(1 )Df D
D

ϕ β η
β

= − − , we can draw the 

typical curves of well-testing model in terms of wDϕ , wDϕ′  and /D Dt C . Then we can analyze the effects 
of different mechanisms on shapes of pressure responses. 
Adsorption. Fig.2(a) shows the log-log plot of pressure responses when Langmuir pressure is 10, 15 
and 20. Fig.2(b) shows the curves when Langmuir volume is 10, 3 and 1. 

 
(a)                                                                             (b) 

Fig.2 Influence of Langmuir pressure and volume on pressure transient responses 
It can be shown that the higher Langmuir pressure or lower volume, the longer the time needed to 

let the hollow appear in the stationary interporosity flow section and the lower the minimal value. 
Stress Sensitivity. Fig.3 shows the log-log plot of pressure responses when dimensionless stress 
sensitive coefficient is 0.01, 0.05 and 0.1. 

 
Fig.3 Influence of stress sensitivity on pressure transient responses 

We can see that for boundry flow period, the higher the stress sensitivity, the faster the boundary 
pressure and pressure derivative curve upward. Analysis also indicates that the greater the stress 
sensitive coefficient, the greater the pressure and pressure derivative. When it is greater than a certain 
value, the stationary interporosity-flow section of dual-porosity medium will disappear. 
Skin Effect and Wellbore Storage Effect. Fig.4(a) shows the log-log plot of pressure responses 
when wellbore storage coefficient is 1, 0.1 and 0.01. Fig.4(b) shows the curves when skin coefficient is 
5, 2 and 0. 
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We can see that the bigger the wellbore storage effect, the greater the peak that occurs in 
continuous flow period of pressure derivative curve and slower the curve drop. The bigger the skin 
coefficient, the larger pressure curve and the greater the peak that occurs in continuous flow period. 

 
(a)                                                                          (b) 

Fig.4 Influence of skin effect and wellbore storage on pressure transient responses 

Conclusions 
In this paper, we present a numerical well-testing model for transient gas flow in naturally 

fractured shale gas reservoirs. The model incorporates several relevant physical processes, such as 
adsorption/desorption, pressure-dependent permeability and dual-porosity mechanisiam. The typical 
curves in terms of dimensionless pseudopressure and time were drawn with different sets of parameters, 
and the sensitivity analysis was carried out. It can be shown that the nolinear flow mechanisims and 
conductive, interconnected natural fractures system can substantially influence transient pressure 
responses of shale gas wells. Therefore well-testing analysis for unconventional gas reservoirs cannot 
rely entirely on traditional, analytical based approaches and have to be carried out by numerical 
approach in general. 
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