

An improved commutative replicated data type for peer to peer
collaborative editing

Xiao Lv 1, a, Yongjie Li2,b and Chaoqun Ang3
1College of Computer Engineering,Naval University of Engineering,Wuhan, China
2College of Computer Engineering,Naval University of Engineering,Wuhan, China
3College of Computer Engineering,Naval University of Engineering,Wuhan, China

 alvxiaoluxu@126.com, bcumtlyj@163.com

Keywords: collaborative editing; peer to peer network; commutative repalicated data type

Abstract. With the development of Internet, collaborative editing over Internert becomes a common
office affair,which can support a harmonious human to human interaction.Peer-to-peer (P2P)
networks are very efficient for distributed collabotative editing. Existing many collaborative editing
algorithms depend on the number of sites, which cannot scale and suitable for P2P networks. In this
paper, we propose a optimal collaborative editing algorithm, which can be addressed two challenges
as follows: it is based on RGA(Replicated Growable Array) algorithm, which has been proved
correctness. Secondly, it does not depend on the number of sites and can support peer to peer
collaborative editing.

Introduction
 Different from traditional distributed systems, real-time collaborative editing systems support

many users from different places to deal with the same data simultaneously[1,2], which can bring a
great chanllenge for the consistency maintenace in the process of collaborative editing.

Operational transformation (OT) algorithms as an optimistic consistency control method have
been proposed nearly over the past three decades[3-8]. Local operations are always executed
immediately when they are issued by the user. Remote operations need to be transformed with
concurrent operations before execution to repair inconsistencies. As a result, they can achieve
consistency of shared data at cooperating sites.In order to achieve consistency, OT mainly have two
methods : one is to design a total order operational transformation path,which can be capatable of
avoiding TP1/TP2; another is to design the operational transformation functions which can be
capable of preserving TP1/TP. However, exsiting researches show that the second mechanism is very
difficult to achieve, the first method is always to ensure the convergence[7,8].

The main problem of the operational transformation approach is scalability. Most existing
algorithms such as GOT[9], GOTO[10] and ABT family algorithms[11,12] depend on state vectors to
detect causal and concurrent operations. A state vector is composed of logical clocks of all sites,
which need to kown the number of sites in collaboration[13]. Users cannot join or leave dynamically
in the collaborative session. When the number of sites grows, the size of the statevectors is
unbounded. Also, the time of detecting causal and concurrent operations will decline as state vectors
grow. OT algorithms based on state vectors cannot scale and cannot be suitable for P2P networks.

Recently, a class of new method called CRDT(commutative repalicated data type) has been
proposed[14-18].Concurrent operaions are designed to be commutative by using the characteristics
of abstract data types. By associated each object with an unique and totallly ordered identifier, all
objects can be totally stored in the data types and can ensure convergence for all sites. Experiments
results show that CRDT algorithms outperform OT algorithms by a factor between 25 and 1000[19].
Also, RGA algorithm has been accepted to have the best average performance in typical CRDT
algorithms.But in RGA algorithm, state vectors are used to define identifier for every object.

It is not suitable for P2P collaborative editing.
In this paper, we improve RGA algorithm, propose an optimized RGA algorithm(ORGA), which

can be applied to P2P collaborative editing.The remainder of this paper is organised as follows:

3rd International Conference on Machinery, Materials and Information Technology Applications (ICMMITA 2015)

© 2015. The authors - Published by Atlantis Press 390

Section 2 describes the RGA approach and details the existing problem. Section 3 presents the
related definitions of ORGA algorithm and an instance analysis. Section 4 summarises the
contributions of this paper and presents some perspectives.

RGA Algorithm
1) RGA control procedure

RGA can support insertion, deletion and update[16]. A linked list and a hash table are repliacated
at all collaborative sites. A linked list stores all total ordered objects. A hash table reserves the
pointer to the node in the linked list. The data structue is shown in Fig. 1.

hash ● ●

list a ●

……

 c Λ

●

 b ●

Fig.1. hash table and linked list in RGA
Every operation object has an s4vector including four integers,which is defined as <int ssn, int sid,

int sum, int seq>.An s4vector can be used as a unique index and used to resolve conflits between
concurren operation.Especially, ssn is a global session number that increases automatic, sid is the site
ID unique to the site, sum is the sum of the state vector, seq is reserved for purging tombstones .

When users issue local operations, find their target elements of local operaion in the linked list,
whcih can be achieved by integer indexes.If the operation is insertion, link the object after the target
element in the linked list. If the operation is deletion, make the object tombstone in the linked list.
Meanwhile, remote operations retrieve their target elements via the hash table with their unique
s4vector. A remote insertion needs to compare its s4vector to other concurrent insertion objects’s
4vector at the same position, then insert its object in a proper position. A remote deletion make the
target element tomstone.
2) Existing problems

An s4vector is defined as <int ssn, int sid, int sum, int seq>. For example, Fig.2. shows a
collaborative editing scenario,The state vector of all operations is

1OSV =(1,0,0),

2OSV =(0,1,0),
3OSV =(0,0,1), SVO4=(2,1,1).we need to kown the fixed number of sites in collaboration,

then assign the state vectors for all operations.

O2=insert(2,x)

site1:“abc” site2:“abc” site3: “abc”

O1=del(1) O3=insert(1,y)

O4=del(0)

O5=del(0)

O6=insert(2,z)

Fig.2. A collaborative edting scenario

An s4vector in RGA algorithm is unique, because s4vector order is a total order. Given two
s4vectors, first the number of ssn is compared, then the sum of state vectors is compared if ssn is
equal. At last, compare the number of sites if ssn is euqal and sum is equal. In Fig.2, the s4vectors of

391

all operations are s4vector (O1) = < 1,1,1,1>, s4vector(O2)=<1,2,1,0>,s4vector(O3)=<1,3,1,0>,
s4vector(O4)=<1,1,4,2>.The s4vector total order of all operations is as follows: s4vector(O1)
s4vector(O2)  s4vector(O3)  s4vector(O4).

From the above example , if we use state vectors to define s4vectors of all operations, we need to
kown the number of all collaborative sites.Therefore, users cannot join or leave dynamically in the
collaborative session. So it cannot scale and cannot be suitable for P2P networks.

ORGA Algorithm

1) The related definitions of ORGA
The control procedure of ORGA algorithm is the same as RGA algorithm. The execution functions

of local insertion and local deletion are defined as Fig.3.

 LocalInsert(ORGAOperation op)
 {
 create a new ORGA_Node;
 if (op.pos == 0)
 {Insert the new ORGA_Node after head;}
 else
 { find the target Node;
 Insert the new ORGA_Node after the target Node; }
 hash.Add(ORGA_Node.key, ORGA_Node);
 }

 LocalDelete(ORGAOperation op)
 {
 Find the target Node based on op.pos;
 Node.makeTombstone();
 }
Fig.3. The functions of local insertion and deletion

The execution functions of remote insertion and deletion are defined as Fig.4.
 RemoteInsert(ORGAOperation op)
 { create a new ORGA_Node;
 ORGA_Node prev, next;
 ORGAs4Vector s4v = op.gets4vector();
 if (op.getPos()=null) prev = head;
 else prev = (ORGA_Node)hash[op.getPos()];
 next = prev.getNext();
 while (next != null)
 { if (Next.getKey() s4v) break;
 prev = next;
 next = next.getNext();
 }
 ORGA_Node.setNext(next);
 prev.setNext(ORGA_Node);
 hash.Add(op.gets4vector(),ORGA_Node);
 }



 RemoteDelete(ORGAOperation op)
 {
 ORGA_Node node = (ORGANode)hash[op.getPos()];
 node.makeTombstone();
 }

Fig.4. The functions of Remote insertion and deletion

Different from RGA algorithm, ORGA algorithm does not use state vectors to define s4vector.
The s4vector of ORGA algorithm is defined as follows:
Definition 1. s4vector’ is defined as <ssn, <sid, lc>, seq> .ssn,sid and seq are the same as RGA, lc

is the logical clock per site, which is a global number that increases automatic.
Definition 2.s4vector’  .Given two operatons O1 and O2, the s4vector’of O1 is s4vector’(O1) and

the s4vector’of O2 is s4vector’(O2). s4vector’(O1)  s4vector’(O2), iff (1) the ssn of
s4vector’(O1) <the ssn of s4vector’(O2); (2) the sid of s4vector’(O1) <the sid of s4vector’(O2) if

392

the ssn of s4vector’(O1) =the ssn of s4vector’(O2); (3) the lc of s4vector’(O1) <the lc of
s4vector’(O2) if the ssn of s4vector’(O1) =the ssn of s4vector’(O2) and the sid of s4vector’(O1)
=the sid of s4vector’(O2) .

In Fig.2, the s4vectors’ of all operations are as follows: s4vector’(O1) =<1,<1,1>,1>, s4vector’(O2
) =<1,<2,1>,0>, s4vector’(O3) =<1,<3,1>,0>,s4vector’(O4)=<1,<1,2>,2>. The s4vector’  of all
operations is as : s4vector’(O1)  s4vector’(O4)  s4vector’(O2)  s4vector’(O3).
2) An instance analysis of ORGA

We take a specific collaborative editing scenario in Fig.2 as an example, then give all the steps of
opearations execution at all sites and the consistent result theoretically.

Fig.2. shows a collaborative scenario, suppose three sites from the same initial state "abc". Three
sites concurrently generates O1, O2, O3 respectively. i

js represents the jth state of the ith
site.α represents tombstone of the character α . The inital structure of hash and linked list is shown
as Fig.5.

hash ● ●

list a ●

……

 c Λ

●

 b ●

Fig.5. The initial structure of hash and linked list

At site1, execute O1, set "b" as tombstone, 1
1s ="a b c". When receive O2, execute O2, 1

2s ="a b xc".
When receive O3, execute O3, 1

3s ="ay b xc". When receive O4, execute O4, 1
4s =" a y b xc".

At site2, execute O2, 2
1s ="abxc". When receive O1, execute O1, 2

2s ="a b xc". When receive O3,
execute O3, 2

3s ="ay b xc".When receive O4, execute O4, 2
4s =" a y b xc".

At site3, execute O3, 3
1s ="aybc". When receive O2, execute O2,="aybxc".When receive O1,

execute O1, 3
3s ="ay b xc".When receive O4, execute O4, 3

4s =" a y b xc".
At last ,all three sites get the same result " a y b xc" .
The final structure of hash and linked list is shown as Fig.6

hash ● ●

list a ●

 y ●

……

 c Λ

●

 x ●

 b ●

 z ●

● ● ●

Fig.6 The final structure of hash and linked list

Summary
In this paper, we propose a optimized RGA algorithm called ORGA. In the ORGA algorithm, we

use logical clocks to define the unique identifier instead of state vectors of RGA , which does not
depend on the number of sites and suitable for peer to peer collaborative editing.

In future research, we plan to extend this work specifically for application domains such as
collaborative software development , CAD and other complex collaborative systems.

393

References

[1] Ellis C A, Gibbs S J. Concurrency control in groupware systems. Proceedings of ACM
SIGMOD international conference on Management of data. Portland, Oregon, USA, 18(2):
399-407(1989)

[2] Saito Yasushi, Shapiro Marc. Optimistic replication. ACM Computing Surveys, 37(1):
42-81.(2005)

[3] Ressel M, Nitsche-Ruhland D, Gunzenhäuser R.An integrating, transformation-oriented
approach to concurrency control and undo in group editors. Proceedings of the ACM conference on
Computer supported cooperative work. Boston, MA, USA. (1996)

[4] Prakash A, Knister M J. A framework for undoing actions in collaborative systems. ACM
Transactions on Computer-Human Interaction (TOCHI), 1(4): 295-330.(1994)

[5] Sun Cheng-Zheng, Ellis C A. Operational transformation in real-time group editors: issues,
algorithms, and achievements. Proceedings of the ACM conference on Computer Supported
Cooperative Work.Seattle, WA, USA.(1998)

[6] Vidot N, Cart M, Ferrié J, Suleiman M. Copies convergence in a distributed real-time
collaborative environment. Proceedings of the ACM conference on Computer Supported
Cooperative Work. Philadelphia, PA, USA.(2000)

[7] Imine A, Molli P, Oster G, Rusinowitch M. Proving correctness of transformation functions in
real-time groupware. Proceedings of the 8th European Conference of Computer-supported
Cooperative Work.Helsinki, Finland.(2003)

[8] Sun C, Xu Y, Agustina A.Exhaustive search of puzzles in operational transformation.
Proceedings of the 17th ACM conference on Computer supported cooperative work & social
computing. Baltimore, MD, USA.(2014)

[9] Sun Cheng-Zheng, Zhang Yan-Chun, Jia Xiao-Hua, Yang Yun. A generic operation
transformation scheme for consistency maintenance in real-time cooperative editing systems.
Proceedings of the ACM conference on Supporting group work. Phoenix, Arizona, USA.(1997)

[10] Sun Cheng-Zheng, Ellis C A. Operational transformation in real-time group editors: issues,
algorithms, and achievements. Proceedings of the ACM conference on Computer Supported
Cooperative Work. Seattle, WA, USA.(1998)

[11] Li Du, Li Rui. An admissibility-based operational transformation framework for collaborative
editing systems.Proceedings of the ACM conference on Comput Supported Cooperative Work.
Savannah, Georgia, USA .(2010)

[12] Shao Bin, Li Du, Gu Ning. ABTS: A transformation-based consistency control algorithm for
wide-area collaborative applications.Proceedings of the 5th International Conference on
Collaborative Computing: Networking, Applications and Worksharing. Washington,
DC,USA.(2009)

[13] Mattern F. Virtual time and global states of distributed systems. Parallel and Distributed
Algorithms, 1(23): 215-226(1989)

[14] Preguica N, Marques J M, Shapiro M, Letia M. A commutative replicated data type for
cooperative editing.Proceedings of the 29th IEEE International Conference on Distributed
Computing Systems. Montreal, QC,Canada.(2009)

[15] Shapiro M, Preguica N. Designing a commutative replicated data Type. France,Inria, Report:

RR-6320(2007)

394

[16] Wu Q, Pu C, Ferreira J E. A partial persistent data structure to support consistency in real-time
collaborative editing. Proceedings of 26th IEEE International Conference on Data Engineering
(ICDE). Long Beach, CA,USA.(2010)

[17] Wu Q, Pu C. Consistency in real-time collaborative editing systems based on partial persistent
sequences.Georgia:Georgia Institute of Technology, Report: GIT-CERCS-09-07.(2009)

[18] Roh H G, Jeon M, Kim J S, Lee J. Replicated abstract data types Building blocks for
collaborative applications.Journal of Parallel and Distributed Computing,71(3): 354-368(2011)

[19] Ahmed-Nacer M, Ignat C L, Oster G, Roh H G. Evaluating crdts for real-time document
editing.Proceedings of the 11th ACM symposium on Document engineering. Mountain View
California,USA.(2011)

395

