

A recovery mechanism of MapReduce model based on transferring
dependency

Li Zhuyu1,a, Li Fucong1,b, Li Xiangxin1,c

1School of Computer and Communication Engineering, University of Science and Technology
Beijing, Beijing, 100083, China

axiaoyu3696@126.com, b li274860615@163.com, clixiangxinustb@163.com

Keywords: recovery; JobTracker; dependency; MapReduce; Zombie task; Synchronization
mechanism; Backup mechanism

Abstract. MapReduce is a popular big data processing tool, but there exists a main node failure
problem. In order to make the restarted JobTracker recover jobs site quickly, there are mainly two
recovery mechanisms: synchronization mechanism and backup mechanism. In synchronization
mechanism, TaskTracker sends synchronous message to JobTracker within required time in order to
recover jobs without considering dependency between Map and Reduce tasks, which leads to
congestion. Using backup mechanism, JobTracker recovers jobs based on backup records ignoring
assigned tasks between backup intervals (which is called zombie tasks). That will result in repeated
task assignment. We come up with a new backup mechanism based on transferring dependency,
with the addition of dependency list mechanism and zombie task recovery mechanism. The new
mechanism effectively solves problems of congestion and duplicated distribution of zombie tasks,
making the jobs continue running from the breakpoint.

Introduction
Hadoop is a software platform for the developing and operating big data, MapReduce is

computing framework of Hadoop platform, responsible for distributed computing[1]. In the
processing of TB and PB level data, MapReduce has become one of the most widely used parallel
programming model[2].There is a main node, called JobTracker[3,4], and several worker nodes,
called TaskTracker, in the MapReduce model.

Currently synchronization mechanism[5] and backup mechanism[6] are mainly adopted by
Hadoop system to deal with the main node failure. In synchronization mechanism, TaskTracker
sends synchronous message to JobTracker within required time in order to recover jobs without
considering dependency between Map and Reduce tasks. That may lead to congestion[7]. The
Hadoop that uses a backup mechanism regularly backups job information normally. Although
JobTracker restores the job site according to backup records after restart, it ignores the existence of
zombie tasks in the backup intervals, thus resulting in duplicated distribution of zombie tasks, waste
of system resources, and abnormal operation.

Thus we come up with a new backup mechanism based on transferring dependency, adding in
dependency list mechanism and zombie tasks recovery mechanism. The new mechanism solves
congestion and duplicated distribution of zombie tasks problems as mentioned before effectively,
making the jobs continue working from the breakpoint.

Congestion problems in synchronization mechanism
Specifically speaking, in synchronization mechanism, JobTracker sends a synchronization

request (Ask Sync) to TaskTracker after restart, and TaskTrackers send their tasks’ status
information to JobTracker for synchronization.

This mechanism may cause task congestion problems, resulting in a lockup of the whole job.
Congestion appears in the synchronization mechanism when there is an incomplete update.
Incomplete Update means the occurrence of exception in some worker nodes that did not send the
synchronization information to JobTracker, which renders the JobTracker unknown of the existence

3rd International Conference on Machinery, Materials and Information Technology Applications (ICMMITA 2015)

© 2015. The authors - Published by Atlantis Press 655

mailto:axiaoyu3696@126.com

of the abnormal node after it restarts. This incomplete update is closely related to the dependencies
between Map and Reduce tasks in MapReduce.

Exception in backup mechanism
In the backup mechanism, Hadoop regularly stores the job’s overall status information in

HDFS[8] (Hadoop Distributed File System), and HDFS will store the job information orderly in a
directory way based on completion time, including job ID, job status, job description, job
completion events etc,. The keep time of job information can be set up in HDFS, which can be
automatically cleaned up when expired [6].

Since there is a time interval between the last backup and the restart of JobTracker after failure,
that is, the backup interval, the task (zombie task) executed by TaskTracker during the backup
interval has no backup record in HDFS. Unknown of the existence of these tasks after restart,
JobTracker therefore would redistribute these tasks, causing jobs exception.

The new backup mechanism based on transferring dependency
Taking into consideration the problems currently existed in the two recovery mechanisms, a new

round backup mechanism based on transferring dependency is put forward. The new mechanism to
which the dependency list mechanism and zombie task recovery mechanism were added on basis of
the original backup mechanism aims for solving the congestion problems during the recovery
process and eliminating exception.

Each Reduce task maintains the data acquisition list which contains the acquisition address of
intermediate results from the Map task needed when executing the Reduce task, that is, the
dependent Map task ID and the task execution node. We call this list Data Dependence Node List
(referred to as DDNL) [7]. Set it as D set. Online Node List (referred to as ONL) refers to the node
list that successfully responds to JobTracker’s control message within heartbeat cycle T, that is, the
normal operation node list, which is set as O set.

Let’s consider ways to recover the job under different circumstances respectively. First, take the
simplest case1 into consideration. That is, no zombie task and no abnormal node in the backup
interval, job site can be restored according to the backup information only.

The second case is that there is zombie task in backup interval and there is no abnormal node
during recovery. JobTracker sends control messages to all worker to inquire whether or not there is
a zombie task after restart within heartbeat period T. After the worker nodes receive the message,
they will make the judgment according to their own condition: Workers that have zombie task will
send to JobTracker the heartbeat that contains zombie task status information; the remaining other
Workers will send heartbeat only reporting the node status to JobTracker. JobTracker can then
restore the job site in accordance with all heartbeat messages received and backup information.

There is also another case3: that is, no zombie task in the backup interval but having abnormal
nodes during the recovery process. If there were nodes that belong to Set D but do not belong to set
O, these nodes would be called set R, namely a set of abnormal nodes. The nodes set that is
dependent on nodes Set R is referred to as Set W. JobTracker sends a control message to all the
worker nodes after restart and each node will respond after receiving the message, and JobTracker
will get ONL after the end of the T time. If Set R is not empty, then JobTracker will send control
messages to ONL requesting their DDNL. If Set W is not empty, then nodes in the Set W will make
response respectively after receiving the control message and send their DDNL to JobTracker.
JobTracker will send control message to the Set W after comparison between all DDNL and set R,
which requires the ignorance of the corresponding nodes of the Set R, and distributes the Map tasks
of nodes in Set R to new nodes, and notifies that the nodes in Set W depend on the new nodes. As
shown in Fig. 1:

656

Time

T1

JobTracker Map
Node a

Reduce
Node b

 Map’
Node c

Send message to ask if there is
zombie task

ONL:
{b}

Inquire DDNL of Node b

Send heartbeat contains DDNL:{a} to JobTracker

Assign task running on Node a to the new Node c, referred to as Map’

Command to ignore Node a

T2

DDNL:
{a}

New
DDNL

Send heartbeat to respond

Node a breaks, no response

Send heartbeat to report node status is normal

Dependency
DDNL： Data Dependency Node List

ONL： Online Node List

Send control message that requires b to depend on c

Fig. 1 Recovery process of Hadoop in case 3

The last as well as the most complicated case is that there are both zombie task and abnormal
node. The job recovery process at this time is shown as Fig. 2:

JobTracker restart

JobTracker sends control message to all
Workers to ask if there is zombie task

Workers that contain zombie task
send heartbeat contains zombie task

information to JobTracker

Workers that contain no
zombie task only report nodes

status to JobTracker

T ends. If R is not null, then
JobTracker asks for online

nodes’ DDNL

Nodes of ONL send their own
DDNL

JobTracker redistributes tasks in
R, ask W to ignore R, and point to

new nodes.

JobTracker recover job site

End

T

Y

N

T：Heartbeat cycle

R: Set of abnormal nodes

W: Nodes set that depends on R
Fig. 2 Flow diagram of job recovery in case 4

Experimental environment
Set the experimental environment as follows: Configure 16 severs of Dual Quad Core Xeon

E5335 2.0GHz CPU, 4G memory, within a cluster and connect servers with 100M Ethernet. Install
XenServer virtualization platform on all servers [9]. Install on each server a virtual machine system
configured as shown in Table 1. Class A node, in Table 1, contains one server on which a 4-core
CPU, 1G memory VM(virtual machine) was installed. Class B node contains 12 servers, with each
server installed two 4-core CPU, 1G memory VM; class C node contains three servers, with each
sever installed four 2-core CPU, 512M memory VM. All nodes are installed with Debian Linux
Ecth 4.0 operating system. Class A node stands for JobTracker; class B and class C nodes contain a
total of 36 VM and are used as TaskTracker, forming a heterogeneous environment. As we can see
from Table 1.

657

Table 1 Experimental environment configuration

Experimental results and performance analysis
Example run by the experiment is Hadoop system’s build-in word counting program -

WordCount. It can calculate the number of times appeared in the specified data congestion. In order
to obtain better statistical results, we started 500, 1000 and 1500 same jobs respectively in the
experiment, which runs as follows: divide them into 100,200 and 300 groups, each group with five
jobs; each group runs in a serial way, while jobs inside a group run in a concurrent way.

Within the running time of jobs in each group, run a manual shutdown and restart of JobTracker
at a randomly selected time point in order to simulate the failure of main node. The operating
system’s average restart time serves as the pause interval. Reference group runs normally and main
node won’t be restarted; the experimental groups which use the synchronization mechanism, the
backup mechanism and the improved mechanism respectively obtain the comparing results shown
in Table 2 and Table 3 below.

Table 2 Recovery time comparison Table 3 Congestion times comparison

As can be seen from Table 2, in the case of not restarting JobTracker, the average time for each

group to perform the job is 258.12s, which represents the average performance of the system. And
yet after a JobTracker failure occurs in the job, since it takes time for JobTracker to restart and
restore global information, the three recovery mechanisms therefore have varying degrees of
slowing down in Table 2. We can also see that the using improved mechanism, Hadoop has the
minimal congestion times. At the same time, job sit can be recovered as soon as possible compared
to other recovery mechanisms. From the tables above, we can get Fig. 3 and Fig. 4 below which are
more clear.

 Fig. 3 Recovery time comparison Fig. 4 Congestion times comparison
As can be seen from Table 3 and Figure 5, with the increased workload, the recovery time of

systems using synchronization mechanism and backup mechanism does not have a surge in trend,

Class A Class B Class C

Server number 1 12 3

Number of VM in each server 1 2 4

Sum of VM 1 24 12

 Number of CPU core in each VM 4 4 2

Memory 1G 1G 512M

OS Linux Debian Etch 4.0

Node
Configuration

500 1000 1500

Normal 258.12 510.22 760.24

Synchronization 352.25 780.66 1163.19

Backup 415.63 844.53 1422.96

Improved 382.54 801.39 1216.62

Workload
Recovery time

500 1000 1500

Normal 0 0 0

Synchronization 9 16 25

Backup 30 92 145

Improved 4 7 15

Workload
Congestion times

0

500

1000

1500

500 1000 1500

Normal

Synchroni
zation

Backup

Improved

0
50

100
150
200

500

1000

1500

658

but there is a significant increase in congestion times. This is because the probability of the backup
mechanism and synchronization mechanism encountering the previous congestion problem is
greatly increased. In actual situation, synchronization mechanism produces more abnormal
conditions, because the stability level of a worker node in the laboratory equipment goes far beyond
the reach of that in real life situations.

Compared to the synchronization mechanism and backup mechanism, the improved recovery
mechanism has the minimum results, whether in recovery time or in congestion times, and there is
no significant increase, which indicates that the improved one enhances the fault tolerance of the
Hadoop cluster.

Conclusion
MapReduce model is widely used in big data processing field for its high degree of parallelism

and scalability advantages. The industry’s typical representatives like Yahoo, Amazon and IBM
take it as a basic computing model for cloud computing platform, and apply it to Internet computing
services, enterprise computing services and scientific computing services [10]. Under such
large-scale demand, higher requirements for the stability of MapReduce model are also put forward.
Hence, the failure recovery issues of the main node attract the industry's attention. We present a
new, more comprehensive recovery mechanism based on transferring dependency to address the
congestion and abnormal problems that exist in the current recovery mechanism, allowing the main
node to resume jobs quickly and accurately after restart, and making them proceed at the
breakpoint.

References

[1] Apache Hadoop [Z]. http://lucene.apache.org/hadoop/,2010-10-15/2010-12-28.

[2] LI Jian-jiang, CUI Jian, WANG Dan, YAN Lin, HUANG Yi-shuang: Survey of MapReduce
Parallel Programming Model[J].ACTA ELECTRONICA SINICA,2011,39(11):2636-2641.

[3] Dean J, Ghemawat S. MapReduce: Simplied Data Processing on Large Clusters[C].Proc of
OSDI.04,2004:137-150.

[4] Zaharia M，Konwinski A, Joseph A D, et al. Improving MapReduce Performance in
Heterogeneous Environments[C].Proc of OSDI.08,2008:29-42.

[5] Hadoop-3245, Provide ability to persist running jobs[Z]. [2009-07-03].

https://issues.apache.org/jira/browse/HADOOP-3245.

[6] Hadoop-1876, Persisting completed jobs status [Z]. [2009-07-03].

https://issues.apache.org/jira/browse/HADOOP-1876.

[7] ZHANG Zhao-ning, PENG Yu-xing: A Method for Solving the Congestion Issue During the
Single Node Recovering Based on the MapReduce Model[J].Computer engineering and science,
2011,33(3):146-148.

[8] http://hadoop.apache.org/hdfs/.

[9] http://www.citrix.com/xenserver.

[10]LI Cheng-hua, ZHANG Xin-fang, JIN Hai, XIANG Wen: MapReduce: a New Programming
Model for Distributed Parallel Computing[J]. COMPUTER ENGINEERING & SCIENCE,
2011,33(3),130-132.

659

http://lucene/
https://issues.apache.org/jira/browse/HADOOP-3245
https://issues.apache.org/jira/browse/HADOOP-1876
http://hadoop.apache.org/hdfs/
http://www.citrix.com/xenserver

