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Abstract. In this paper, the (3+1)-dimensional Jimbo-Miwa equation is solved by Fan sub-equation
method with improved algorithms. As a result, many new and more general travelling wave solutions
are obtained including kink-shaped soliton solutions, rational solutions, triangular periodic solutions,
Jacobi and Weierstrass doubly periodic wave solutions. At a certain limit condition, the obtained
Jacobi elliptic periodic wave solutions can degenerate into soliton solutions. It is shown that the
improved algorithms of Fan sub-equation method can lead to such solutions with external linear
functions possessing two remarkable evolutionary properties: (i) the wave propagation is skew; (ii)
the amplitude enlarges along with the increasing time.

Introduction

With the development of computer science, some symbolic computation systems like Mathematica
or Maple have been used to perform the complex and tedious computation on computers for
constructing exact solutions of nonlinear evolution equations (NLEESs), such as those in [1-10].
Searching for exact travelling wave solutions of NLEEs plays an important role in the study of
nonlinear physical phenomena. In 2003, the so-called Fan sub-equation method [11] was proposed
for solving NLEESs and received many applications [12-14]. Recently, Zhang and Peng [15] improved
Fan sub-equation by modifying its algorithms. One of the advantages of this improved algorithms can
lead to such solutions with external linear functions of some given NLEEs. This present paper is
motivated by the desire to show the effectiveness and advantage of the improved algorithms [15]
through the (3+1)-dimensional Jimbo-Miwa equation [9]:

Uy +3U, U, +3U,u, +2u, —3u, =0. 1)

Exact solutions

In this section, we consider the (3+1)-dimensional Jimbo-Miwa equation (1). We take the
following travelling wave transformation:

u=u(x,y,z,t)=u(é), &=ax+by+cz-at, 2
where a, b, ¢ and o are constants, then Eq. (1) is reduced into an ODE

a’bu® +6a’bu'u” — (3ac + 2bw)u” = 0. (3)
We then integrate Eq. (3) once with respect to & and set the integration constant to zero, Eq. (3)
becomes

a*bu® +3a’b(u’)? — (3ac + 2bw)u’ = 0. (4)
Setting u' =v, we have

a’bv” +3a’bv’® — (3ac + 2bw)v = 0. (5)
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According to the improved Fan sub-equation method [15] we suppose that Eq. (5) has the
following formal solution

V=a2¢2(§)+al(p(§)+ao. (6)
where ¢(¢&) satisfis a second-order linear ordinary differential equation (ODE):

@' (&) = hy + hp(&) + 1,9* (&) + hyp™ (&) + N9 (). ()
Substituting Eq. (6) along with Eq. (7) into Eq. (5) and collecting all terms with the same order of
p(&) together, then setting each coefficient of the polynomial to zero, we derive a set of algebraic

equations for a, b, ¢, o, «,, « and a, as follows:

@ (&) =y + (&) + he® (£) + e’ (£) + he' (). (8)
@°(&): a’bash +4a’ba,h, +6a’ba? — 4bwa, —6aca, =0, 9)
(&) a’bah, +3a%ba,h, +6a’baya, — 2bwa, —3aca, =0, (10)
P°(£): 3a’ba,h, +8a%ba,h, +6a°ba’ +12a%ba,a, — 4bwa, —6aca, =0, (11)
p*(&): 2a%bayh, +5a°ha,h, +6a’ba,a, =0, (12)
p*(&): 2a’ba,h, +a’hal =0. (13)

With the help of Mathematica, from this set of algebraic equations we obtain five cases as follows:
Case 3.1, when h,=h =h, =0:

_ 3
a,=-2ah,, =0, o,=0, a)=3ac+—4abhz, (14)
2b
_ _ 3
a,=-2ah,, « =0, o, = —iahz, ®= M. (15)
3 2b
We then obtain
_ 3
v=-2ahg* (&), = 3ac+—4abhz, (16)
2b
_ _ 3
v=—2ah,0’ (&) —%ahz, o= ?’acz—b“ath. (17

We substitute the general solutions [11] of Eq. (7) into Egs. (16) and (17), respectively, and use Eq.
(6), then three types of travelling wave solutions of Jimbo-Miwa equation (1) are obtained.
(i) If h, >0, h, <0, we obtain two kink-shaped soliton solutions

u=2a,/h, tanh(/h,&) +d,, (18)

_ 3
where & =ax+by+cz +%t, here and hereafter d, is a arbitrary constant.

3
u=2a\/Etanh(\/E§)—%ah2§+dl, §=ax+by+cz+%t. (19)
(it) If h, <0, h, >0, we obtain two triangular periodic solutions
_ 3
u=-2a,-h, tan(y-h,&)+d,, &=ax+by+cz +Mt, (20)
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3ac +4a’bh, ‘

u = 2a,/-h, tan(y/-h, &) —%ah2§+ d, &=ax+by+cz+ 2

(iii) If h, =0, h, >0, we obtain two rational solutions

u=2ast+d, §=ax+by+cz+3%ct,

uzagh%mg+¢,§:w+w+a+%§t

2
Case 3.2, when h,=h =0, h =—e:
4h,
_ _ 3
a, :—Zah4, a = 0, o, = _ahZ' a):?m—zabm,
2b
1 —3ac + 2a’bh
a,=-2ah,, a, =0, a,= —gahz, Q:TZ.
Therefore, we obtain
_ _ 3
v=-2ah,p’ (&) -ah, (&), o= 3ac—2abhz’
2b
1 —3ac + 2a°bh
v=-2ah,¢’()-=-ah,, o=——— ==~ 2
L, O &) 3 L, @ b

(21)

(22)

(23)

(24)

(25)

(26)

(27)

We substitute the general solutions [11] of Eq. (7) into Egs. (26) and (27), respectively, and use Eq.

(6), then two types of travelling wave solutions of Jimbo-Miwa equation (1) are obtained.
(i) If h, <0, h, <0, we obtain two kink-shaped soliton solutions

3
u = a,/-2h, tanh( —h—22§)+d1, E=ax+by+cz +wt’

543
u = ay/~2h, tanh( —h—22§)+§ah2§+dl, £=ax+by+cz+ 20 2abh;

(ii) If h, >0, h, >0, we obtain two triangular periodic solutions

3ac + 2a’bh, ‘

u=-2a,/2h, tan(\/%g) +ah,&+d;, &=ax+by+cz+ 2

_ 3
u=-2ay2h, ta”(gﬁﬂgahzﬁdl, £=ax+by+cz +Wt.

Case 3.3, when h,=h =0:

—3ac ¥ 4a’b,/a*(h? =3h h
@ =280, @ =0, = (-ah, 7 fahi —3ahh,), o= - (h, —3fh,)

We then obtain

—3ac F4a’b,/a’(h? —3h,h
v=-2ahg?(£) - 2(ah, + a7hi -3alhyh,), o= (-3t
a

(28)

(29)

(30)

(31)

(32)

(33)

We substitute the general solutions [11] of Eq. (7) into Egs. (32) and (33), respectively, and use Eq.

(6), then two Jacobi elliptic function solutions of Jimbo-Miwa equation (1) are obtained.
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Fig. 1. Evolutionary plots of Jacobi doubly periodic solution (35) with (+) branch for parameters a
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In Fig. 1, the Jacobi doubly periodic solution (35) is shown. We can see from Fig. 1 that solution
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which causes such evolutionary properties.

At the limit case m — 1, the obtained Jacobi doubly periodic solutions (34) and (35) degenerate
into the soliton solutions (19) and (29), respectively.

Case 3.4, when h,=h =h,=0:

1 —3ac —a’bh
=0, =0, =—Zah, op=——— 2%, 37
a, o a, ak 1) 2 (37)
1 —3ac +a’bh
a,=0, =—Eah3, a, =0, a)=2—b2. (38)
1 1 —3ac—a’bh
a,=0, o :_Eah3' a, =—§ah2, w=T2. (39)
Thus, we obtain
_ _ 3
v=-lan, o= 2bh (40)
3 2b
1 —3ac+a’bh
v=-Zahg, o= 22 41
5 LY, @ b ( )
1 1 —3ac—a’bh
v=-=ahp-=ah,, o=—2%, 43
5 L P ik w b ( )

We substitute the general solutions [11] of Eq. (7) into Egs. (40)-(43), respectively, and use Eqg. (6),
then three types of travelling wave solutions of Jimbo-Miwa equation (1) are obtained.
(i) If h, >0, we obtain a rational solution and two kink-shaped soliton solutions

3
uz—lah2§+d1, §=ax+by+cz+Mt, (44)
3 2b
_ A3
u=%1/2h2 tanh(\/%éﬂdl, §:ax+by+cz+%t, (45)
3
u= %,/th tanh(\/%ﬁ)—%ahszrdl, &=ax+by+cz +%t- (46)

(ii) If h, <0, we obtain the same rational solution (44) and two triangular periodic solutions

a3
u :—%,/—th tan( —h—22§)+d1, E=ax+by+cz +Wt (49)
3
u :_% |-2h, tan( —h—;g)—%ahngrdl, E=ax+by+cz +Wt. (46)
(iii) If h, =0, we obtain two rational solutions
u=—35‘1+d1, §=ax+by+cz+ﬁt, (47)
2 2b
uz—gg‘l—iah &+d §=ax+by+cz+&ﬁt (48)
2 3 7Y 2b
Case 3.5, when h, =h, =0, h,>0:
3 h —3ac ++/3a’b,/hh,i
020 a= e gy PR, SR SR (49)

678



We then obtain

v:—a%go(g)iﬁag/@i, w:—3aci\/2§:b hhi (50)

We substitute the general solutions [11] of Eq. (7) into Eq. (50), and use Eq. (6), then a Weierstrass
elliptic function solution of Jimbo-Miwa equation (1) is obtained

h 3 hi 3ac ¥+/3a%b /hh.i
u:_a_hsj‘sg(\/jgl,gp%)dglimgwdl, E=ax+by+cz+ ac+fa h”It, (51)
2 2 6 2b
where gzz—i—hl, g3:—4h—h°.
3 3
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