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Abstract. This paper introduces an identification algorithm for a thermal system with 
multi-variable closed-loops. First, a kind of subspace identification algorithm based on the principle 
component analysis (PCA) is analyzed. Next, the PCA is used to identify the parameters of the 
process, where dynamic model of coordinated control system (CCS) of power plant is obtained. 
Finally, an example for a subcritical drum boiler is used to illustrate the effectiveness of the 
introduced identification algorithm. The results demonstrate the contributions of the developed 
identification method to the closed-loops in thermal power plant 

Introduction 
Modern thermal power plant, which is large inertia, nonlinear, and strong coupled, is a typical 

multi-input multi-output (MIMO) object [1]. The CCS is the most important control system of 
power plant, and is regarded as one of the most complex control system in the thermal power plant. 
For the strong coupling and time-varying, the CCS is very difficult to obtain a desired performance 
with classical PID controller. Furthermore, with the large-scale wind power integrated into the grid, 
recent grid codes have specified higher requirements of thermal power plants. 

The advanced control theories may achieve better performance than conventional PID controllers 
used. However, those advanced control theories usually need the high accurate model to maintain 
the desired performance. However, industrial processes are general nonlinear and multivariable 
systems, which are not easy to identify the accurate parameters by using conventional identification 
methods, such as least square identification (LSI). 

In recent years, the subspace model identification (SMI) is widely used to identify multivariable 
systems. SMI has a better numerical reliability and a modest computational complexity compared 
with the prediction error method (PEM), particularly when the number of outputs and states is large 
[2-5].SMI based multivariable output error state space (MOESP) has been proposed [6]. Ljung and 
McKelvey extended the subspace identification based on autoregressive exogenous (ARX) model 
into LS problems [7]; Van Overschee and De Moor provided a generic method for closed-loop 
subspace identifications [8].For error-in-variable (EIV) model structure, Huang et al. proposed a 
subspace identification method based on orthogonal projection and instrumental variables [9]. 
Aiming at solving the open-loop error in variable (EIV) identification problem, Wang and Qin [10] 
developed an instrument variable subspace identification method via PCA, where the bias has been 
delivered into the closed-loop identification. 

This paper introduces a PCA based SMI method, where PCA is used to identify parameters of 
the state-space equation of the process by EIV formulation. A simulation example for a thermal 
power plant is given to illustrate the performance of the identification method. The results show that 
the proposed SMI method provides a more accurate identification in comparison with LSI used. The 
paper is organized as follows. The subspace identification method based on PCA is presented in 

3rd International Conference on Machinery, Materials and Information Technology Applications (ICMMITA 2015)

© 2015. The authors - Published by Atlantis Press 846



 

Section Ⅱ. In Section Ⅲ, a simulation example provides to demonstrate the contributions. Finally, 
conclusions are drawn in Section Ⅳ. 

SMI with PCA Approach 
A typical SMI algorithm contains two steps: 
1. Identification of the extended observability matrix Γf and a block triangular Toeplitz matrix 

Hd
f; 
2. Estimation of the system matrices A, B, C and D from the identified observability matrix and 

the Toeplitz matrix. 
In this section we present an EIV SMI algorithm based on PCA, denoted as SMI–PCA. The 

following is the discrete–time linear time–invariant (LTI) state space model to represent a controlled 
object to be identified, 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
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+ = + +

= + +
 (1) 

Here ( ) 1mu k R ×∈ , ( ) 1ly k R ×∈ and ( ) 1nx k R ×∈ are input, output and state variables, respectively. 
( ) 1le k R ×∈ is the zero mean white noise. K is the Kalman filter gain. 

In order to describe the system dynamics, we use the extended state-space model. For an 
arbitrary time point k taken as the current time, we define the past and future output vectors and the 
Hankel output matrices as the following: 

( ) ( ) ( ) ( ) T
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( ) ( ) ( )1 1 mf n
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Where subscript p and f stand for the past and future, and p≥f>n. The vectors yp(k) and yf(k) are 
similarly to the up(k) and uf(k), respectively. By iterating Eqs. (1), we use the Hankel data matrix 
instead of the data vector, the extended model is rewritten in the following form [10]: 

d s
f f f f f f fY X H U H E= Γ + +   (6)                                

Where Yf and Ef have the same structure as the Uf, and 
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is the extended observability matrix with rank n. The following matrixes  
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are two block Toeplitz matrices.  
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Considering (6), for closed-loop identification, the future disturbance Ef is no longer independent 
of the future input Uf due to the feedback.  

To solve this problem, by adopting the EIV structure of Wang and Qin [10], we move the term 
related to Uf into the left hand side of Eq. (6) as it would be a troublesome term if left in the right 
hand side of the equation. Substituting (7) into (10), 

fd s
f f f f f

f

Y
I H X H E

U
 

 − = Γ +  
 

 (10) 

Using the short-hand notation 
T

f f fW Y U =    (11) 
Eq. (10) can be simplified as 

d s
f f f f f fI H W X H E − = Γ +   (12)                                                   

Performing an orthogonal projection of Eq. (12) onto the row space of pW  yields 

/ / /d s
f f p f f p f f pI H W W X W H E W − = Γ +   (13) 

Where 
T

p p pW Y U =                                                         (14) 
The last term of Eq. (13) is an orthogonal projection of the future disturbance Ef onto the row 

space of past input and output matrix Wp, which is zero. Namely, 
/ =0s

f f pH E W  (15) 
Therefore, Eq. (13) can be simplified to 

ˆ/ /d
f f p f f p f fI H W W X W X − = Γ = Γ   (16) 

Where ˆ /f f fX X W= , and ˆ
fX is the Kalman filter state. The orthogonal projection of Eq. (13) 

onto the row space of pW  results in Eq. (15), which includes a multiplication term between the 

extended observability matrix Ci and non-steady state Kalman state ˆ
fX . 

Denoting 
f
⊥Γ  as the orthogonal complement of fΓ  with full column rank, multiplying both 

sides of Eq. (15) by
f
⊥Γ , Eq. (15) can be transformed to 

T
/ 0d
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Denoting /f pZ W W= , the problem is transferred to find the orthogonal column space of Z, which 

should equal to the column space of ( )TT d
f fI H⊥   Γ −    . 

Perform SVD decomposition of Z as 
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With Eq. (28), one can easily find the orthogonal column space of Z, which is 2U . Therefore 

( )TT

2
d
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Where M  is any constant nonsingular matrix and is typically chosen as an identity matrix [11]. 
Partition 
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Then Eq. (29) can be written as 
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Therefore, 
1f P⊥Γ =  (22) 

( ) 2

Td
f fH P⊥− Γ =  (23) 

The remaining problem is to solve for fΓ  and d
fH , and then to extract the system matrices A, 

B, C, D from fΓ  and d
fH . We refer to [10] for a discussion on the detailed solution procedure. 

Dynamic Simulations 
In Fig. 1 is the low-order nonlinear model of unit [12][13]. On the one hand, the model is a 

reflection of the energy balance between the systems, on the other hand, it reflects essential 
nonlinearity features of the system. Most of research and analysis of CCS of is based on this model 
in China, where Bµ , Tµ , EN and TP  denote fuel command,  opening of the main steam valve, 
output active power, and throttle pressure.  

Taking into account the small perturbations characteristics of CCS at rated operating conditions, 
drum boiler-turbine units can be simplified to the dual-input dual-output dynamic linear model 
displayed in Fig. 2. 

   

The relationship between control and process output variables can be expressed as a transfer 
function as follows: 

( ) ( )
( ) ( ) ( )= =GPB PTT B B

NB NTE T T

g s g sP
s
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µ µ
µ µ
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×      

      
 (24) 

A. Model Identification 
In this paper, the model of the CCS of 600MW power plant is employed as the identification 

object. Data of identification is selected from the living operating records, where the operating point 
is at the 60% rated capacity of the power unit. Under the chosen operating point, Bµ and Tµ are the 
input signals for the identification, while, EN and TP  are the identified outputs. The filtrated 1400 
pairs of the data, of which sampling period is 1s, are used to identify the parameters of the 
linearized state space model. Based on the obtained model, controlled object can be identified. 

Next, we use the Akaike Information Criterion (AIC) to identify the order of the model, which 
was originally proposed by Akaike [14] and extended by Larimore  for SMI[15][16]. The order of 
controlled object can be obtained from the AIC index based on characteristic polynomial (CP) 
method [10]. The AIC based on CP indicates that the system order is two shown in Fig. 3. Then, the 
discrete state-space model can be calculated based on the obtained order. Finally, the identified 
parameters are shown as follows: 
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Fig.2  Linearized model of CCS 
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Fig. 1  Simplified nonlinear model of CCS 
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The fitting curves have been calculated by using the identification data. The comparison between 
the  model and plant outputs are shown in Fig. 4 and Fig. 5, respectively. 

 

The accuracy of predictive model can be determined by the prediction error, which can be 
written as following form. 
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Where, N is the data length, l is the number of model output, yhij and yij are the values of 
simulation models and actual system respectively ,where the subscript ij denotes the  j-th output 
value at the i-th moment. The prediction error of output active power, and the throttle pressure are 
0.1356% and 0.0658%, respectively. This fine error infers that the introduced method can provide 
an accurate identification. The simulation results show that the identification error is significantly 
fine. 

B. Dynamic simulations 
Under 60% rated capacity at stable point, the step disturbance responses of μB and  μT is 

performed, respectively. The step response of μB is shown in Fig. 6.It can be seen that when μT is 
stable and fuel instruction μB is increased, the heat absorption of boiler heating surface evaporation 
must be increased too, while steam pressure is increased after a certain delay. Because of turbine 
tone opening is a constant during the simulation, the rise of steam pressure is limited by the 
increased steam flow spontaneously. When a new equilibrium has been obtained between the steam 
flow and combustion rate, steam pressure PT will tend to a new higher steady state. For the increase 
in steam flow, the output active power NE is also increased. 
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The step response of μT is shown in Fig. 7. It can be seen that when μB is stable and fuel 
instruction μT is increased, steam flow must be increased immediately, and PT must be decreased at 
the same time. Because of μB is a constant during the simulation, the evaporation also remains the 
same. Because steam pressure is decreased, a part of the heat storage is released, which leads to the 
increase of steam flow, however, the process is temporary. In the end, the steam flow goes back to 
the initial value, throttle pressure PT will tend to a new lower steady state. Because steam flow is 
increased temporarily in the transition process, output active power  NE is increased accordingly. 
Finally,  output active power  NE recovers the initial value. 

Conclusion 
In this paper, the SMI based on PCA is developed to identify parameters of the multivariable 

thermal process by choosing the appropriate field data. The data fitting of results and simulations 
show that the subspace based identification is an effective method of closed-loop identification for 
the multivariable objects, especially for the system with serious noise disturbance and large delay, 
such as the CCS of thermal power plant. This method can quickly and effectively identify the model 
of thermal power unit, which can better describe the identified system, and has a higher precision. 
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